Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сравнение шкал

Сравнение шкал твёрдости  [c.376]

Рис. 16. Сравнение шкал спектрографа с призмами (а) и дифракционной решеткой (б) для нормального спектра (оба спектра одинаковой Рис. 16. Сравнение шкал спектрографа с призмами (а) и <a href="/info/10099">дифракционной решеткой</a> (б) для <a href="/info/368888">нормального спектра</a> (оба спектра одинаковой

Фиг. 107. Сравнение шкал спектрографа с призмой (а) ж дифракционной решеткой (б) для нормального спектра (оба спектра выбраны одинаковой длины). Фиг. 107. Сравнение шкал спектрографа с призмой (а) ж <a href="/info/10099">дифракционной решеткой</a> (б) для <a href="/info/368888">нормального спектра</a> (оба спектра выбраны одинаковой длины).
Спектры с постоянной дисперсией, лежащие вблизи нормали к решетке, называют нормальными спектрами. В этом отношении призматический спектр, где дисперсия меняется обратно пропорционально >1, , менее удобен. На рис. 65 дано сравнение шкал призменного спектрографа (а) и спектрографа с дифракционной решеткой (б).  [c.90]

Сравнение шкал ареометров.....858  [c.784]

Результаты сличения ПТБ и НФЛ получены косвенным путем — расчетом на основании результатов сравнения шкал этих учреждений со шкалой Утрехтского университета.  [c.14]

Рис. 12. В последующих объяснениях мы пользуемся метрической системой мер ввиду ее почти всемирного распространения и большого удобства. В США обычно пользуются шкалой Фаренгейта, поэтому мы даем сравнение шкал температур по Цельсию и Фаренгейту. Рис. 12. В последующих объяснениях мы пользуемся <a href="/info/138530">метрической системой</a> мер ввиду ее почти всемирного распространения и большого удобства. В США обычно пользуются <a href="/info/43870">шкалой Фаренгейта</a>, поэтому мы даем сравнение шкал температур по Цельсию и Фаренгейту.
На рис. 16 представлены для сравнения шкалы Цельсия, Реомюра и Фаренгейта.  [c.49]

При пересчете на водородную шкалу электродных потенциалов, измеренных по отношению к другим, перечисленным выше электродам сравнения, следует к значениям измеренных потенциалов Е прибавить значение потенциала электрода сравнения по водородной шкале (Кк)обр. т. е.  [c.175]

Для расплавленных солей электродные потенциалы, измеренные по отношению к различным электродам сравнения Е, пересчитывают на шкалу натриевого нулевого электрода сравнения прибавлением значения потенциала электрода сравнения по натриевой шкале (Уок-в)ыа, т. е.  [c.175]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]


В обе шкалы Не-1958 и Не-1962 не введены данные об уравнениях, использованных при вычислении таблиц, однако экспериментальные основы шкалы хорошо известны. Шкала Не-1958 основана на результатах, полученных с газовым термометром, которые были сглажены по магнитному термометру, а ниже 2,2 К — на термодинамических вычислениях. Шкала Не-1962 основана на сравнении давлений паров Не и Не выше 0,9 К, а ниже — на термодинамических вычислениях.  [c.70]

Это — динамическое определение напряжения силы. Статическое определение напряжения силы основано на сравнении данной силы с другой, принятой за единицу меры. Для этой цели обыкновенно пользуются пружинными весами, или динамометрами. Устройство динамометра основано на свойстве сил вызывать в упругих телах исчезающие деформации, пропорциональные силам, если только эти силы невелики по сравнению с пределом упругих деформаций. Простейший динамометр представляет собой упругую пружину (рис. 174), неподвижно укрепленную в точке О и снабженную индексом А и шкалой 5. На. другом конце пружины находится приспособление В для приложения  [c.184]

Для выбора оптимальных условий записи спектров при градуировке спектрометра часто применяют следующий способ. По эталонному спектру поглощения проводят оценку полуширины наиболее узкой полосы поглощения. Спектральную ширину щели берут приблизительно равной Д полуширины полосы. После вычисления и установки рабочей ширины щели подбирают усиление регистрирующей схемы с таким расчетом, чтобы во время записи перо самописца не выходило за пределы шкалы. Затем устанавливают приемлемый уровень шумов путем подбора постоянной времени усилителя. Скорость сканирования определяют таким образом, чтобы время записи наиболее узких линий поглощения было равно 10—20 т. Правильность выбора условий записи контролируют сравнением качества записанного и эталонного спектров.  [c.150]

Для измерения частоты путем сравнения ее с плавно регулируемой частотой 0 генератора величина fo изменяется до полного совпадения с частотой /х, и по шкале генератора отсчитывается значение измеряемой частоты, так как /х = /о- Но в этом случае точность измерения ниже, так как генераторы регулируемой частоты в лучшем случае имеют относительную погрешность 0,001.  [c.148]

Оценка коррозионной стойкости сплава АЛЗ и промышленного алюминия (для сравнения) в среде кислот и морской воде по пятибалльной шкале  [c.87]

Группа Определение физических свойств покрытий состоит из наибольшего числа методик, причем часть способов, которые применяются сравнительно редко и имеют узкую методологическую направленность, в классификацию, предложенную нами, не включены. Наиболее важным физическим свойством (и одновременно структурной характеристикой) в этой группе является пористость. Методика определения пористости, в свою очередь, имеет ряд разновидностей (гидростатическое взвешивание, микроскопический способ, сравнение со стандартной шкалой и т. д.).  [c.18]

В СССР разработан и широко применяется способ контроля величины зерна по затуханию УЗ-волн, измеренному относительным методом [80]. Наиболее простым является способ сравнения амплитуд сигналов от противоположных поверхностей изделия и образцов с известной структурой. Для уменьшения влияния упомянутых мешающих факторов измеряют отношение амплитуд сигналов на двух различных частотах. При этом одну из частот (опорную) выбирают заведомо низкой, так что затухание ультразвука слабо зависит от структурных составляющих. Другие частоты (рабочие) соответствуют области максимального затухания (вследствие рассеяния). Отношения амплитуд сигналов, соответствующих рабочим и опорной частотам, называемые структурными коэффициентами, определяют на исследуемом изделии для различных рабочих частот и сравнивают со структурными коэффициентами, полученными на стандартных образцах. Контроль можно проводить на продольных и сдвиговых волнах. Используя частоты 0,65. .. 20 МГц, оценивают величину зерна в аустенитных сталях в диапазоне номеров 1. .. 9. Погрешность определения величины зерна — не более одного балла шкалы.  [c.419]

Вольтметры с усилителями часто имеют выход для подключения самопишущих измерительных приборов. Благодаря этому могут быть использованы также и самопишущие приборы с низким входным сопротивлением для регистрации результатов измерения с высоким сопротивлением источника. Высокоомные универсальные приборы, применяемые в электротехнике для измерения напряжений, токов и сопротивлений, тоже могут применяться для измерения потенциала. Универсальные приборы обычно имеют измерительный механизм магнитоэлектрической системы с вращающейся рамкой, подвешенной на ленточных растяжках. Они прочны, нечувствительны к действию повышенной температуры и имеют линейную шкалу. При времени успокоения стрелки не более 1 с, как требуется для измерения потенциалов, максимальное внутреннее сопротивление таких приборов составляет 100 кОм на 1 В. Поскольку сопротивление электродов сравнения большой площади обычно не превышает 1 кОм, с применением таких приборов возможны достаточно точные измерения потенциалов. Однако при измерениях потенциала в высокоомных песчаных грунтах или на мощеных мостовых (малая диафрагма) сопротивление электрода сравнения может значительно превышать 1 кОм. Погрешности измерения, получаемые в таких случаях при применении универсальных приборов, могут быть устранены с применением схемы, принцип которой показан на рис. 3.6 [9]. Параллельно измерительному прибору при помощи кнопочного выключателя S подключается сопротивление Ri, одно и то же для соответствующего диапазона измерений. При допущении, что внешнее сопротивление меньше внутреннего Ra[c.92]


ДЛЯ сравнения шкалы частот, гармонической и мелодической высот. Там же приведен масштаб ДЛИНЫ кортиева органа на базилярной мембране (31 мм) и шкала ступеней едва заметного на слух изменения частоты. Таких ступеней в диапазоне слышимости частот приблизительно 850.  [c.24]

Таблица 67а. Сравнение шкал ареометров разн Таблица 67а. Сравнение шкал ареометров разн
Очевидно, Что пропорциональность pV газовой температуре — ые Еовый физический закон, а определение этой шкалы. Смысл же опытов Гей-Люссака по определению температурного коэффициента расширения газов состоит в сравнении шкал газового и ртутного термометров.)  [c.69]

Гальванический элемент принято (Международной конвенцией в Стокгольме в 1953 г.) записывать так, чтобы электрод сравнения всегда был слева, а за э. д. с. ячейки Е принимать разность потенциалов правого и левого электродов, т. е. = — Vn- Если левым электродом служит стандартный водородный электрод, (pH, = 1 атм, ан+ = 1), то э. д. с. элемента равналю величине и по знаку электродному потенциалу правого (исследуемого) электрода по водородной шкале, т. е.  [c.150]

Сравнение рис. 2.6 и 2.7 показывает, что основная часть найденных отклонений между термометрами вызвана расхождениями их градуировок в реперных точках. Если, как показано на рис. 2.7, эту часть отклонений устранить, остаточные расхождения становятся гораздо меньшими. Тогда кривая среднеквадратичных отклонений на рис. 2.7 становится хорошей оценкой единственности МПТШ-68 при использовании современных термометров. На рис. 2.8 показаны расхождения в наклонах шкал по показаниям пар термометров в соответствии с их исходными градуировками. Эти расхождения невелики выше 27 К, но при более низких температурах становятся существенными для измерений теплоемкости. Поэтому следует проявлять осторожность при интерпретации точных измерений теплоемкости и других величин, связанных с разностью температур при низких температурах, особенно если они выполнены  [c.58]

В гл. 2 излагалось, каким образом на основе ряда реперных точек и определенных методов интерполяции между ними возникла Международная практическая температурная шкала (МПТШ). Реперными точками первой МПТШ являлись точки кипения кислорода, воды и серы, точки затвердевания воды, серебра и золота. В современной редакции шкалы добавлены точки кипения водорода и неона, тройные точки водорода, неона, аргона, кислорода и воды, точки затвердевания олова и цинка в свою очередь точка кипения серы исключена. В последние годы тройные точки и точки затвердевания считаются более предпочтительными по сравнению с точками кипения по простой причине они могут быть реализованы без необходимости измерять давление. Продолжающийся рост требований к увеличению точности реализации точек кипения приводит к необходимости более точных измерений давления, что сопряжено с очень большими трудностями. Например, для реализации точки кипения воды с воспроизводимостью по температуре 0,1 мК необходимо измерение давления с погрешностью 0,3 Па в свою очередь в точке кипения серы изменения давления 0,3 Па приводят к изменениям температуры на 0,2 мК- Необходимость в расширении МПТШ ниже 13,81 К, т. е. в область, где тройных точек не существует, привело к разработке реперных точек, основанных на фазовых переходах в твердом теле. Наиболее важным шагом в этом направлении явилось принятие в качестве реперных точек нижней части ПШТ-76 температур сверхпроводящих. переходов.  [c.138]

В нынешней редакции МПТШ-68 платиновый термометр сопротивления, используемый при температурах выше 630 °С, должен градуироваться лишь путем сравнения со стандартной платино-платинородиевой термопарой. Поскольку даже с учетом эффектов решеточных вакансий и царапания проволоки воспроизводимость результатов у платинового термометра сопротивления гораздо лучше, чем у термопары, эту ситуацию нельзя признать удовлетворительной. Отсутствие общепринятого интерполяционного уравнения является одним из препятствий на пути к более широкому использованию высокотемпературных термометров сопротивления. До тех пор пока не будут проведены надежные сравнения МПТШ-68 с термодинамической шкалой температур в диапазоне от 630 до 1064 °С, от интерполяционного уравнения можно требовать лишь приведения в соответствие показаний платинового термометра сопротивления с квадратичной зависимостью э. д. с. термопары от температуры. Такое уравнение уже существует оно определяет градуировку платинового термометра сопротивления по шкале МПТШ-68 с точностью, достижимой для платино-платинородиевой термопары, а именно 0,2°С.  [c.219]

Стандарт — результат конкретной работы по стандартизации. Он может быть представлен 1) в виде документа, со-держаи(его ряд требований пли норм 2) в виде основной единицы или физической константы, например абсолютны нуль (шкала Кельвина) 3) в В 1де какого-либо ипрлмета для физического сравнения, например метр (эталон .  [c.9]

На рис. 4.3 изображен элемент с электродными пространствами, разделенными пористым стеклянным диском G. Предположим, что электрод В поляризован током, идущим от электрода D. Капилляр L (иногда называемый капилляром Луггина) электрода сравнения R (или солевого мостика между электродами R и В) расположен вблизи от поверхности В, что позволяет уменьшить ошибку измерения потенциала, вызванную омическим падением напряжения в электролите. Э. д. с. элемента В—R определяют для каждого значения тока, измеряемого амперметром А с периодичностью достаточной для установления стабильного состояния. Поляризацию электрода В (катода или анода) измеряют в вольтах по отношению к электроду сравнения R при различных значениях плотности тока. Как правило, значения потенциалов приводят по стандартной водородной шкале. Этот метод назы-  [c.49]


При дифференциальном методе измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на ноль по блоку концевых мер длины. Нулевой метод — также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Подобным методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием. При методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют используя совпадения отметок шкал или периодических сигналов (например, при измерении штангенциркулем используют совпадение отметок основной и ноннусной шкал). Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала). Комплексный метод характеризуется измерением суммарного noi asa-теля качества, на который оказывают влияния отделыгые его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др. контроль положения профиля по предельным контурам и т. п.).  [c.111]

Многофотонный фотоэффект приводит к исчезновению красной границы фотоэффекта, определяемой формулой (15.20а), и ее смещению в длинноволновую часть шкалы электромагнитных волн. Это вполне понятно, так как при многофотонном, например -фотонном, фотоэффекте в левой части выражения (15.19) будет присутствовать энергия не одного, а п квантов. В частности, если энергии всех поглощенных квантов равны, то для п-фотонного фотоэффекта условие (15.20) будет иметь вид = А, где /г ш 1 — энергия одного фотона. Тогда v,j n = Alhit = h uH/hn, т. е. красная граница , выраженная в частотах, в этом случае станет в п раз меньше по сравнению с однофотонным фотоэффектом.  [c.345]

Для непосредственного измерения i можно ввести в день фотоэлемента какой-нибудь прибор, измеряюш,ий силу тока. Обычно в качестве такого прибора используют второй гальванометр. При удачной конструкции усилителя, обеспечении хороших контактов, сведении к минимуму вибраций и т. д. удается, используя два простых кембриджских гальванометра с внутренним сопротивлением 500 ом, работать с сопротивлением/ = 20 ом, а при благоприятных условиях с еще меньшим сопротивлением. При этом достигается увеличение чувствительности по напряжению примерно в 25 раз по сравнению с собственной чувствительностью гальванометра этого типа. Иными словами, если гальванометр без усилителя имеет чувствительность примерно 2 мм мкв при расстоянии от зеркала до шкалы 1 м, то при использовании описаиной схемы с двумя такими же гальванометрами чувствительность достигает 5 см1мкв. Действие сильной отрицательной обратной связи выражается в том, что свойства системы становятся почти не зависящими от параметров гальванометра и фотоэлементов. Это избавляет нас от необходимости заботиться о линейности первичного гальванометра и фототока [см. (10.1)].  [c.177]

Термин вырожденное применяется к распределению электронов, для которого область энергий, соответствующих полностью заполненным уровням, очень велика по сравнению с шириной переходной области порядка 2коТ. В вырожденной системе электронов только небольшая часть их (- коТ/Е °) может изменить свою энергию. Электрон с малой энергией может заметно изменить свое состояние, если переместить его на пустой энергетический уровень вблизи уровня Ферми. Ввиду неразличимости электронов это эквивалентно тому, что все промежуточные электроны сдвинулись бы в1верх (по энергетической шкале) на соседние уровни. Такой процесс обладает очень малой вероятностью.  [c.109]

Рассмотрим порядок проведения анализа на какой-либо один элемент из числа заданных. Прежде всего необходимо разобраться в спектре железа. Для этого, сравнивая полученную спектрограмму со стандартной, имеющейся в лаборатории, нужно отметить на фотопластинке характерные линии и группы в спектре железа, указанные на стандартной спектрограмме. Сравнение можно провести путем наложения спектрограмм, пользуясь при этом лупой. Из таблиц последних линий нужно выписать длины волн линий определяемого элемента и их интенсивности. Далее, ориентируясь по отмеченным группам в спектре железа, на экран спектропроектора проектируется тот участок спектрограммы, где предполагается присутствие последних линий. Изображение спектра железа нужно совместить с изображением его на соответствующем планшете атласа спектров. Зная длины волн разыскиваемых линий и пользуясь спектром железа как шкалой длин волн, находят места на спектрограмме, где должны располагаться эти линии. Рассмотрим следующие две возможности отождествления линий.  [c.36]

Ламповый тераомметр ЕК6-7, серийно выпускаемый промышленностью, более полно удовлетворяет предъявляемым требованиям по сравнению с другими типами электрометров. Напряжение, подаваемое на образец, может составлять 1, 10, 100 и 1000 В. Прибор ЕК6-7 обеспечивает возможность измерения сопротивлений образцов Rx в пределах 10 —10 Ом. Измеряемое значение сопротивления можно отсчитать по одной из шкал 10—100 ГОм 1—10— 100—10 —10 —10 ТОм (10 Ом). Погрешность измерения (от верхнего предела соответствующей шкалы) не превосходит 4% в диапазоне Rx < 10 Ом, 6% при R < 10 Ом и 10% при R, 10 Ом. Значение погрешности зависит от напряжения пи-  [c.46]

Такие манометры являются более простыми, однако и менее точными приборами по сравнению с грузопоршневыми манометрами. Лучшие из них — образцовые манометры 3-го разряда имеют класс точности 0,16 (т. е. максимальная погрешность при измерении давления составляет 0,16% номинального значения шкалы прибора).  [c.64]

На рис. 3.7 приведены значения угла поворота б в зависимости от отношения давлений Pi и угла aj3 для перегретого пара k — 1,3). Там же нанесена линия предельного расширения в косом срезе сопла. Точки пересечения указанной линии с кривыми 6 = = / (Pi) определяют предельные значения угла поворота, минимальные значения Р и максимальные значения изоэнтропийного перепада по сравнению с критическим (верхняя шкала графика). Понижение давления за решеткой ниже предельного р = РпРо не приведет к дальнейшему повышению мош,ности турбины, так как расширение от до / 1 будет проходить за пределами косого среза и сопровождаться большими потерями.  [c.102]

Способ Роквелла по сравнению с другими способами имеет существенные преимущества, которые состоят в автоматизации испытательных операций, получении чисел твердости непосредственно по шкале прибора, большой скорости испытаний, требующих всего несколько секунд при подготовленной поверхности образца. Применение наконечника из самого твердого материала позволяет производить испытания весьма твердых металлов, чего нельзя сделать по методу Бринеля.  [c.54]

Сравнение полученной кривой с кривой длительной прочности металла с феррито-карбидной структурой, построенной по результатам испытания образцов в лабораторных условиях (рис. 2.1, а, кривая 2) показывает их хорошую сопоставимость. Однако следует отметить значительный разброс точек, соответствующих разрушенным гибам. Для повышения надежности диагностики состояния металла гибов паропроводов и оценки их остаточного ресурса целесообразно дополнительно проводить анализ их поврежденности порами, используя для этого шкалу, приведенную в гл. 1.  [c.52]

Параметрическая диаграмма длительной прочности в полной мере отражает влияние структуры стали 12Х1МФ на долговечность. Например, в случае металла повышенной прочности по сравнению со среднемарочными характеристиками со структурой игольчатого сорбита отпуска (балл 1 шкалы микроструктур ТУ 14-4-450-75) и феррито-сорбитной структурой (балл 2—5 шка-  [c.108]



Смотреть страницы где упоминается термин Сравнение шкал : [c.445]    [c.69]    [c.171]    [c.67]    [c.40]    [c.83]    [c.149]    [c.119]    [c.39]   
Смотреть главы в:

Принятие решений Метод анализа иерархий  -> Сравнение шкал



ПОИСК



77 - Сравнение чисел твердости различным шкалам

Границы сравнения со шкалами

Краткое сравнение метода собственного значения с другими методами, использующими шкалы отношений

Сравнение МКЭ и МГЭ

Шкала температур абсолютная термодинамическая сравнение с другими шкалами

Шкалы



© 2025 Mash-xxl.info Реклама на сайте