Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переменный Резонанс

Как для интерферометра с фиксированной частотой и переменной I, так и для интерферометра с переменной частотой, но фиксированной длиной I можно считать Rr, I действительной величиной. Далее предполагается, что членами второго и более высоких порядков по а/, Рг, ( и до 7/-го резонанса 2к(1—1ц), где 1к = МХ1 2, можно пренебречь. Обозначим  [c.103]

Вынужденные колебания, вызываемые внешними периодическими силами (неуравновешенностью вращающихся деталей, погрешностями изготовления, переменными силами в поршневых машинах и т. д.), обычно во избежание резонанса, т. е. совпадения частот возмущающих сил с частотами собственных колебаний, последние определяют расчетным путем,  [c.18]


Чем больше заряд, тем сильнее деформируется пластинка. Под влиянием переменного электрического поля пластинка сжимается или растягивается в такт изменению знаков приложенного напряжения, т. е. колеблется она с частотой, с какой меняется электрическое поле. Если приложенное электрическое напряжение изменяется с частотой, равной частоте механического резонанса пластинки, то пластинка совершает колебания на этой резонансной частоте.  [c.195]

При резонансе переменная амплитуда вынужденных колебаний a= t растет прямо пропорционально времени (рис. 119).  [c.99]

Переменная амплитуда а вынужденных колебаний в случае отсутствия силы сопротивления неограниченно возрастала при резонансе,  [c.103]

Переменная амплитуда вынужденных колебаний при резонансе а = 4Ы см растет прямо пропорционально времени, что представляет угрозу сохранности прибора и той машины, на которой прибор смонтирован (так как в действительности имеется, хотя бы небольшая, сила сопротивления движению, то уравнение вынужденных колебаний оказывается иным. См. ниже второй вариант решения задачи).  [c.113]

Из сопоставления формул (2) и (8) следует, что в то время, как при отсутствии силы сопротивления переменная амплитуда вынужденных колебаний стрелки В при резонансе росла прямо пропорционально времени a — 40f см, при наличии силы сопротивления движению В — 25,6 V кг, амплитуда оказывается величиной постоянной, равной 0,625 с.и.  [c.115]

При проектировании конструкций, подверженных воздействию возмущающих сил, резонанс стараются устранить, например, изменяя параметры системы или частоту возмущающей силы, уменьшая амплитуду возмущающей силы, повышая выносливость деталей, подвергающихся воздействию переменной нагрузки.  [c.409]

Пусть т/ = со8(г1 + Г2), = соз(г1 — Г2). На плоскости введем декартовы координаты и вдоль вертикальной оси будем откладывать значения переменной т), а вдоль горизонтальной — значения Очевидно, имеем к1 < 1. 1 1 1. что геометрически соответствует квадрату, стороны которого параллельны осям координат и проходят через точки (1,0), (0,1), ( — 1,0), (0,-1). Чтобы получить область резонанса, из этого квадрата следует вырезать полосу, заключенную между прямыми  [c.247]

Другая важная особенность влияния линейного сопротивления на вынужденные колебания связана с явлением резонанса. В случае резонанса при линейном сопротивлении амплитуда вынужденных колебаний не возрастает пропорционально времени, как при отсутствии сопротивления, а остается постоянной величиной. Достаточно как угодно малого сопротивления, чтобы амплитуда вынужденных колебаний при резонансе была постоянной, хотя, возможно, и достаточно большой, но не переменной, возрастающей с течением времени. Это свойство вынужденных колебаний хорошо подтверждается опытными данными.  [c.445]


Явление резонанса. В системе при возбуждении колебаний под действием периодически изменяющейся внешней силы амплитуда колебаний сначала постепенно увеличивается . Через некоторое время после начала действия переменной силы устанавливаются вынужденные колебания с постоянной амплитудой и с периодом, равным периоду внешней силы (рис. 217).  [c.219]

Спиновый резонанс. Рассмотрим теперь движение спина в магнитном поле, которое имеет постоянную компоненту В в направлении оси z и небольшую переменную компоненту Я1 в направлении оси X частоты со. Сумма этих двух полей будет равна  [c.261]

Линейные резонансные ускорители представляют систему линейно расположенных электродов, к которым приложено переменное электрическое поле, частота поля постоянна и находится в резонансе с движением частицы. Ускоряемые частицы движутся прямолинейно и многократно проходят ускоряющие промежутки. При прохождении каждого ускоряющего промежутка частица приобретает энергию, равную ZeU , где — ускоряющее напряжение в каждом промежутке в вольтах с учетом фазы ср.  [c.62]

Магнитный резонанс — это избирательное (резонансное) поглощение энергии переменного электромагнитного поля электронной или ядерной подсистемами вещества, находящегося в постоянном магнитном поле. Поглощение связано с квантовыми переходами между дискретными энергетическими уровнями, возникающими в этих подсистемах под действием постоянного магнитного поля. Ниже мы кратко рассмотрим два типа магнитных резонансов — электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).  [c.351]

Если поместить пластинку между обкладками конденсатора, питаемого переменным напряжением (рис. 475), то в ней можно возбудить вынужденные упругие колебания этого типа. При совпадении частоты внешней силы с собственной частотой пластинки наступит резонанс и амплитуда вынужденных колебаний достигнет максимума (она может достигать величины 10 см). Прикладывая достаточно большие электрические напряжения, легко было бы получить и большие амплитуды, но при этом деформации в пластинке превосходят допустимые пределы и она может разрушиться.  [c.745]

Феррит, помещенный в постоянное магнитное поле напряженностью Но и перпендикулярное к нему переменное СВЧ-магнитное поле, поглощает СВЧ-энергию. Это поглощение носит резонансный характер (ферромагнитный резонанс) и максимально на частоте соо, определенным образом связанной с полем Но. Зависимость резонансной частоты Шо от Но имеет сложный характер и определяется магнитной кристаллографической анизотропией, анизотропией формы, упруго напряженным состоянием образца и т. п. [3]. В наиболее простом случае изотропной сферы  [c.708]

Математическое описание параметрического резонанса в линейных системах производится с помощью линейного дифференциального уравнения с переменными коэффициентами  [c.133]

Отсюда видно, что ф (т) также является переменной во времени величиной, причем медленно меняющейся. Поэтому исследуемая система будет проходить через все возможные значения разности фаз между усиливаемым сигналом и накачкой, в том числе и через значения, при которых достигается максимальная и минимальная амплитуды, т. е. система попеременно будет переходить от сильного резонанса к слабому, затем снова к сильному и т. д. Следствием этого является амплитудная модуляция вынужденного колебания с частотой 2А(о. За один период в системе два раза реализуется сильный и два раза слабый параметрический резонанс. Такое амплитудно-модулированное колебание можно представить как биения двух гармонических компонент с близкими частотами и постоянными амплитудами.  [c.149]

Вариация реактивной проводимости. Изменение (вариация) реактивной проводимости осуществляется обычно изменением емкости колебательного контура. В схеме используется высокочастотный генератор с фиксированной частотой. С ним слабо связан измерительный колебательный контур, содержащий катушку индуктивности и конденсатор переменной емкости (рис. 4-10, а), па-, раллельно которому может присоединяться испытуемый образец. Генератор работает в режиме неизменного тока, поэтому напряжение на параллельном колебательном контуре (рис. 4-11, а) при изменении реактивной проводимости (обычно емкости) контура переходит через максимум, а затем уменьшается. Наибольшее напряжение на контуре отвечает состоянию резонанса В контуре есть потерн, поэтому эквивалентная схема, помимо Г и С, содержит проводимость соответствующую потерям (рис. 4-11,6). Если по оси абсцисс откладывать емкость проградуированного конденсатора С И снимать зависимость и (С), т. е. резонансную кривую, один раз для контура без образца и второй раз — с образцом, то  [c.78]


При резонансе в контуре без образца, согласно теории переменных токов,  [c.80]

Наибольшее распространение при измерении ТКЕ получили приборы, основанные на методе биений (рис. 4-16, а). Испытуемый образец включают с помощью зажимов в колебательный контур генератора 1. Генерируемая частота в этом случае будет зависеть от емкости образца С . В приборе имеется второй, опорный, генератор 3, частота которого стабилизирована кварцем и неизменна. Сигналы обоих генераторов, усиленные усилителями 2 и 4, поступают на смеситель 5 и усилитель-детектор 6, выделяющие разностную частоту (частоту биений). Первоначально при температуре Г, настраивают контур генератора 1 с образцом в резонанс с частотой опорного генератора 3, для этой цели служит конденсатор С. О равенстве частот судят по нулевому отклонению стрелки микроамперметра рА. Если теперь нагреть образец, то емкость его изменится, а это повлечет за собой изменение частоты генератора /. При помощи вспомогательного конденсатора а с переменной емкостью вновь настраивают генератор 1 в резонанс с генератором 3. Очевидно, что изменение емкости подстроечного конденсатора между первой и второй настройками равно изменению емкости образца. Зная изменение емкости и соответствующую ему разность температур, нетрудно подсчитать ТКЕ.  [c.93]

Виброустойчивость. Виброустойчивостью называют способность конструкции работать в нужном диапазоне режимов, достаточно далеких от области резонансов. Вибрации снижают качество работы машин, вызывают переменные напряжения в деталях. Особенно опасны резонансные колебания. Расчеты на виброустойчивость рассматриваются в курсе Теория колебаний и выполняются для машины в целом.  [c.22]

Момент Ми усиливает переменную нагрузку на опоры вращающегося звена и вибрацию всей системы. При большой частоте вращения силы инерции достигают значительных числовых значений и нередко превосходят внешние силы. Это особенно опасно в тех случаях, когда частота вибрации, вызванная силами инерции, совпадает с частотой собственных колебаний конструкции, т. е. при наличии резонанса.  [c.188]

Последний полет самолета, а следовательно, работа лопатки с развивающейся трещиной, продолжался в течение 12 мин. Массивная лопатка первой ступени вентилятора имеет максимальный уровень резонансных напряжений на частоте 200 Гц. Если предположить, что в течение всего последнего полета лопатка имела резонанс на указанной частоте нагружения (т. е. на нее все время в полете действовала максимальная переменная нагрузка), то длительность ее работы составит 12 X 60 X 200 = 144000 циклов. Следовательно, даже если лопатка все время в полете находится в условиях резонанса с указанной частотой колебаний, когда и реализуется в ней максимальный уровень напряжения, то период роста трещины в ней мог быть реализован не менее чем в двух полетах. Трещина в лопатке в предыдущем полете уже была.  [c.585]

В уравнениях, приведенных в 2, 3 и 5 для цилиндрической и кубической трубки, встречаются две постоянные — о я /о. которыми существенно обусловливается резонанс теперь мы постараемся вычислить эти постоянные для некоторых случаев. При этом необходимо определить потенциал скоростей для всего рассматриваемого объема воздуха и для движения, которое в цилиндрической трубе поддерживается ее основанием, в кубической же трубе — произвольной частью сосуда. Это опять-таки возможно кри некоторых определенных предположениях относительно ограничения объема воздуха. Мы примем, что для расстояний от отверстия порядка длины волны или больших, простирающихся в бесконечность, объем воздуха или ничем не ограничен, или ограничен частью произвольной конической поверхности, вершина которой расположена в отверстии. Обозначим через г расстояние переменной точки от этой вершины и допустим, что для значений г порядка длины волны или больших, имеет место уравнение (19)  [c.282]

В сердечнике из магнитоотрикцион-пого материала при наличии электромагнитного поля домены разворачиваются в направлении магнитных силовых линий, что вызывает изменение размера поперечного сечения сердечника и его длины. В переменном магнитном поле частота изменения длины сердечника равна частоте колебаний тока. При совпадении частоты колебаний тока с собственной частотой колебаний сердечника наступает резонанс и амплитуда колебаний торца сердечника достигает 2—10 мкм. Для увеличения амплитуды колебаний на сердечнике закрепляют резонансный волновод переменного поперечного сечения, что увеличивает амплитуду колебаний до 10— 60 мкм. На волноводе закрепляют рабочий инструмент — пуансон. Под пуансоном-инструментом устанавливают заготовку и в зону обработки поливом или иод давлением подают абразивную суспензию, состоящую из воды и абразивного материала. Из абразивных материалов используют карбиды бора или кремния и электрокорунд. Наибольшую производительность получают при использовании карбидов бора. Инструмент поджимают к заготовке силой 1 — 60 Н.  [c.411]

Пример 164. Для определения коэффициента вязкости жидкости наблюдают колебания диска, подвешенного на упругой вертикальной проволоке в жидкости. К диску приложен переменный момент, равный /М sin (/ /) (УИ = onst), при котсором наблюдается явление резонанса. Момент сопротивления движению диска в жидкости равен S o, где р, — коэффициент вязкости жидкости, S — сумма площадей верхнего и нижнего оснований диска, ш — его угловая скорость.  [c.348]

Работа машинного агрегата сопровождается динамическими воздействиями его.на окружающую среду. Гфи относительном движении звеньев усилия в кинематических парах изменяются, что приводит к переменному нагружению стойки механизма. Вследствие этого фундамент, на которо.м установлен машинный агрегат, испытывает пиклически изменяют,иеся по величине и направлению силы. Эти силы через фундамент передаются на несущие конструкции здания, соседние машинные агрегаты и приборы и приводят к колебаниям и вибрациям. Неравномерность движения звеньев механизмов приводит к возникновению дополнительных сил инерции. Эти силы увеличивают колебания и вибрации звеньев механизма и машины в целом и сказываются на точности их работы. Если амплитуда колебаний достаточно велика (например, при работе в зоне резонанса), то в деталях звеньев возникают напряжения, превышающие допускаемые, что приводит к их разрушению. Вибрации — это причина выхода из строя деталей самолетов и вертолетов, элементов газовых и паровых турбин, неточностей в работе станков, роботов и т. п.  [c.351]


Рассмотрим резонансные явления в системе, движение которой определяется уравнением (11.287). Для больщей конкретизации расмотрим движение маятника переменной длины. Изменение длины маятника в системе, показанной на рис. 43, очевидно, вызывается внешней силой. При периодическом изменении длины маятника работа, производимая этой силой, положительна при уменьшении длины маятника и отрицательна при ее увеличении. Если положительная работа, прозводимая внешней силой, больше абсолютного значения производимой ею отрицательной работы, то энергия маятника возрастает, и это вызывает увеличение амплитуды его колебаний. При этом возникает резонанс. Этот резонанс вызывается изменением длины маятника, которая является одним из параметров системы. Поэтому резонанс в этом случае называется параметрическим.  [c.309]

Обычно условие резонанса находится плавным изменением напряженности постоянного поля (изменением ларморовой частоты) при постоянной частоте переменного поля. Достоинством метода является возможность использования его для исследования ядерных моментов в атомах, как лишенных электронного момента, так и с электронными моментами, отличными от нуля.  [c.77]

Параметрический резонанс в магнитном поле. Заряд движется в переменном магнитном поле, задаваемом вектор-потенциалом A t, )=Bj2f(t)(—y, X, 0), f(t) = l—k os(nt, feрешение уравнений движения при w Q = eBjm .  [c.301]

Рассмотрение частного случая. Рассмотрим в качестве примера соль СиС12-2НзО, свойства которой хорошо изучены и которая не представляег собой слишком сложный случай антиферромагнетизма. Решетка этой солп обладает орторомбической симметрией. В Лейдене были изучены намагниченность в постоянных п переменных магнитных полях [137, 138], теплоемкость [139], электронный резонанс [140, 141] п протонный резонанс [142, 143] этой соли.  [c.412]

Если на сплошную колебательную систему действует переменная внешняя сила, то она вызывает вынужденные колебания в системе. При этом наблюдаются явления ])езонанса. 1 ак же как и в системе с одной степенью свободы, в сплошных системах в момент возникновения внешней силы возбуждаются собственные колебания, которые постепенно затухают. Для установления явления резонанса необходимо известное время, тем большее, чем меньше затухание собственных колебаний в системе.  [c.657]

В отдельных особо благоприятных случаях эта вероятность может оказаться даже в пределах достижимости современной техники эксперимента. Более того, существуют приборы, работающие на макроскопическом пролете виртуальных фотонов. Одним из простейших приборов такого типа является обычный трансформатор. Электроэнергия передается из одной обмотки трансформатора в другую (зазор между обмотками явно макроскопический) потоком виртуальных фотонов с энергией Йш (со — частота переменного тока) и с длинами волн, имеющими порядок размеров зазора. Соответствующий этим волнам импульс на много порядков превышает импульс свободной волны частоты ш, так как длина такой волны при со = 50 Гц имеет-порядок 10 км. Можно, конечно, возразить, что трансформатор — прибор неквантовый. Тогда возьмем чисто квантовое явление — ядерный магнитный резонанс, одна из схем которого приведена и объяснена в гл. И, 5, рис. 2.10. В этой установке уже одиночные виртуальные фотоны, излучаемые высокочастотной катушкой, резонансно поглощаются одиночными ядерными магнитными моментами. Виртуальность этих фотонов видна без всяких расчетов из того, что только при наличии резонирующих ядер из генератора, питающего высокочастотную катушку, интенсивно выкачивается энергия (на этом и оснр-  [c.330]

Размах колебаний при вибрации мапЛта получается наибольшим, когда частота собственных колебаний подвижной системы совпадает с частотой переменного тока. Для изменения частоты собственных колебаний, т. е. для настройки в резонанс, изменяют положение постоянного магнита 2 относительно наконечников 4. Вследствие этого изменяется постоянный магнитный поток, подводимый к подвижному магниту, и, следовательно, магнитная со-  [c.57]

Явление резонанса связано с воздействием переменного поля с частотой f на феррит, подмагинчиваемый постоянным полем Н , направленным под прямым углом к переменному. Спины электронов начинают прецессировать с собственной частотой /д = АЯ , где А — постоянная. Когда частота внешнего электромагнитного ноля / приближается к собственной частоте /д, прецессия возрастает и при / = /д возникает индуцированный ферромагнитный резонанс. Этот Э( х )ект проявляется наиболее сильно, когда векторы Н и Н образуют прямой, угол. Тот же эффект возникает, если частоту внешнего  [c.251]

В литературе наш пример с часами был впервые рассмотрен в Ele trote hn. Zeit hrift за 1904 г. в связи с актуальной в то время проблемой колебаний синхронных машин . Два синхронных генератора переменного тока, включенные параллельно и работающие на одну и ту же цепь тока, испытывают в случае резонанса нежелательные колебания числа оборотов и тока. Эти колебания являются по существу увеличенным отображением колебаний наших часов, а также и рассмотренных здесь явлений связи и резонанса симпатических маятников.  [c.157]

Если в системе вообще нет резонансов, то преобразование Биркгофа можно применить для нормализации функции Гамильтона до сколь угодно высокой степени (/ схэ). Нормализованная во всех степенях функция Гамильтона зависит только от переменных (qlpl) (/с = 1, 2,..., п). Тогда преобразованная система уравнений движения может быть проинтегрирована, причем для этого не надо пренебрегать в ее правых частях никакими членами. Казалось бы, что это должно означать локальную (в окрестности положения равновесия) интегрируемость уравнений движения. Однако это не так. Дело в том, что пре-  [c.402]


Смотреть страницы где упоминается термин Переменный Резонанс : [c.458]    [c.99]    [c.422]    [c.254]    [c.324]    [c.744]    [c.746]    [c.51]    [c.86]    [c.610]    [c.315]    [c.277]    [c.553]   
Справочник машиностроителя Том 2 (1955) -- [ c.341 ]



ПОИСК



Резонанс

Резонанс в стержне при действии переменной

Резонанс в цепи переменного тока

Резонанс в цепи переменного тона

Резонанс напряжений в цепи переменного

Резонанс напряжений переменного тока

Резонанс переменного тока

Секулярные члены. Методы усреднения гамильтоновых систем. Каноническое преобразование к медленным переменным. Локализация энергии в нелинейной системе. Параметрический резонанс. Система в быстроосциллирующем поле Заряженная частица в высокочастотном поле Метод удвоения переменных

Системы быстрыми переменными без частотных резонанМногочасто rtibi автономные вращательные системы без частотных резонансов

Системы с медленными и быстрыми переменными без частотных резонансов



© 2025 Mash-xxl.info Реклама на сайте