Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод свободных колебаний и резонансный метод

МЕТОД СВОБОДНЫХ КОЛЕБАНИЙ И РЕЗОНАНСНЫЙ МЕТОД  [c.149]

Поскольку для конденсаторных трубок требуется определить частоту не только основного тона, но и первых гармоник, то применение метода свободных колебаний для трубок исключено (этим методом трудно определить даже частоту колебаний основного тона, так как из-за наличия зазоров в промежуточных перегородках свободные колебания трубки быстро затухают). При использовании резонансного метода можно производить определение частот колебаний трубок как с записью колебаний (с помощью шлейфового осциллографа), так и без нее. В обоих случаях для установления формы колебаний трубки наиболее удобно применять стробоскоп, позволяющий визуально наблюдать эту форму.  [c.126]


Из расчетов частот свободных колебаний известны первые наиболее опасные формы колебаний валопроводов. Кроме того, из эксперимента или расчетных данных должны быть известны частоты вынужденных колебаний и величины первых наиболее интенсивных гармоник переменной составляющей крутящего момента (возмущающих сил). Если эти частоты совпадают, т. е. имеет место резонанс, то необходимо выполнить расчет резонансных колебаний и определить опасность возникающих при этом напряжений скручивания в рассматриваемом валопроводе. Эта задача при наличии трения решается обычно энергетическим методом (см. т. I, 6 и 12) [33].  [c.277]

Существует несколько методов определения динамических характеристик методы свободных колебаний методы вынужденных нерезонансных и резонансных колебаний, а также методы, основанные на распространении волн или импульсов.  [c.143]

Ноли [100] исследовал упругие свойства резиноподобных материалов, причем он использовал пять различных экспериментальных методов, чтобы охватить всю область частот между 0,1 гг и 120 кгц. При самых низких частотах (от 0,1 до 25 гц) применялся метод свободных колебаний, причем резиновый образец действовал как упругая восстанавливающая сила на балку, качающуюся на ножевой призме. При высоких частотах использовались три различных резонансных метода и метод распространения волн. Метод распространения волн будет рассмотрен в следующем параграфе, а здесь мы бегло упомянем о резонансных методах, которые описал Ноли. При частотах между 10 и 500 гц Ноли пользовался методом резонансных колебаний язычка, при котором образец был защемлен в записывающую головку граммофона и изгибные колебания сообщались ему через зажим. Этот метод удобен, но частоты, которые он может перекрыть, ограничены как механическими возможностями записывающей головки, так и упругими свойствами образца, поскольку резонансная частота может быть изменена только путем изменения его размеров или формы.  [c.130]

При контроле клеевых соединений используют следующие методы вакуумный, при котором непроклеенное место выпучивается под действием вакуума метод свободных колебаний, при котором наличие дефекта изменяет характер собственных колебаний метод сквозного прозвучивания ультразвуковой, резонансный метод и др.  [c.221]

При использовании стоячих волн возбуждают свободные или вынужденные колебания либо объекта контроля в целом (интегральные методы), либо его части (локальные методы). Свободные колебания возбуждают путем кратковременного внешнего воздействия на объект контроля, например, ударом, после чего он колеблется свободно. Вынужденные колебания предполагают постоянную связь колеблющегося объекта контроля с возбуждающим генератором, частоту которого изменяют. Информационными параметрами являются частоты свободных колебаний или резонансов вынужденных колебаний, которые несколько отличаются в связи с воздействием возбуждающего генератора. Эти частоты связаны с геометрическими параметрами изделий и скоростью распространения в них ультразвука. Иногда измеряют величины, связанные с затуханием колебаний в объекте контроля амплитуды свободных или резонансных колебаний, добротность колебаний, ширину резонансного пика.  [c.98]


Резонансные методы правильнее назвать методами колебаний, поскольку они объединяют методы свободных и вынужденных колебаний изделия или его части. Именно к вынужденным колебаниям относят понятие резонанса, т. е. совпадения частоты возбуждения с частотой собственных колебаний системы.  [c.125]

Методы вынужденных колебаний. Принципиальный недостаток этих методов состоит в том, что связь колеблющегося объекта контроля с возбуждающей колебания внешней системой приводит к смещению резонансных частот относительно частот свободных колебаний. Учесть это смещение трудно, а иногда невозможно, поэтому обычно считают, что частоты резонансов и свободных колебаний совпадают, допуская систематическую погрешность.  [c.127]

Резонансный толщиномер. Локальный метод вынужденных колебаний применяют для измерения толщины и дефектоскопии тонкостенных труб и оболочек. Прибор для реализации этого метода называют резонансным толщиномером. Он основан на возбуждении в стенке изделия по толщине ультразвуковых колебаний и определении частот, на которых возникают резонансы этих колебаний. В простейшем случае, представляя изделие как пластину, поверхности которой с обеих сторон свободны, условие возбуждения упругих резонансов записывают в виде уравнения для свободных колебаний (2.26).  [c.128]

Несмотря на то, что приведенный метод является математически точным, полученные при этом результаты с инженерных позиций нередко следует расценивать как приближенные, поскольку при суммировании членов ряда приходится обычно ограничиться конечным числом гармоник г. При выборе этого числа во избежание отсечения резонансного режима (jz = 1) следует руководствоваться не только характером сходимости коэффициентов Qj, но и условием к/а> + (1- 3). Отсюда становится ясным, что использование рядов Фурье оказывается более эффективным при хорошо сходящихся гладких функциях Q (О и при относительно небольшом превышении частоты свободных колебаний k над основной частотой возмущения со = = 2я/т.  [c.83]

Экспериментальное определение частот свободных колебаний трубопроводов в судовых условиях. Для экспериментального определения частот свободных колебаний трубопроводов в судовых условиях может быть использовано несколько методов, в зависимости от конкретных условий величины ожидаемой частоты колебаний, размеров трубопровода, наличия свободного пространства для проведения эксперимента и др. Эти методы могут быть разбиты на две группы по свободным затухающим колебаниям и по вынужденным резонансным колебаниям. В первом случае возбуждение колебаний производится либо ударом резинового молотка по трубопроводу, либо путем статического нагружения трубопровода через проволоку сосредоточенной силой с последующим мгновенным снятием нагрузки перерезанием этой проволоки. Во втором случае в качестве возбудителя колебаний используются механические вибраторы или электромагниты переменного тока.  [c.221]

Применение ультразвука при дефектоскопии основано на способности ультразвуковых упругих колебаний с большой скоростью (до 12 ООО м/с) распространяться в твердых телах и отражаться от границы сред, имеющих различные акустические свойства. В УЗ-дефектоскопии используют несколько методов теневой, эхо-метод, резонансный и акустические методы — импедансный и метод свободных колебаний.  [c.564]

Измерение внутреннего трения образца можно производить двумя методами снятием резонансной кривой при возбуждении в образцах поперечных колебаний и методом затухания свободных крутильных колебаний. Первым методом измеряют внутреннее трение на установке сконструированной в специальной лаборатории Московского института стали и сплавов [16] путем определения амплитуды колебаний при резонансной и близкой к ней частотах  [c.256]


В настоящее время известны пять методов ультразвуковой дефектоскопии ультразвуковые — теневой, резонансный и эхо-методы — и акустические — импедансный и метод свободных колебаний. В этих методах используются четыре вида упругих колебаний — продольные, сдвиговые, поверхностные и свободные. Эти колебания вводятся в контролируемое изделие тремя способами — сухим контактным, контактным со смазкой и иммерсионным. Колебания излучаются в одном из двух режимов — непрерывном или импульсном.  [c.58]

В резонансных методах связь колеблющегося ОК с возбуждающей и принимающей колебания внешней системой приводит к смещению резонансной частоты относительно частоты свободных колебаний. Учесть это смещение трудно, а иногда невозможно, поэтому обычно считают, что частоты резонансов и свободных колебаний совпадают, допуская систематическую погрешность. В то же время амплитуды вынужденных колебаний больше, чем свободных, и измерения выполнять легче. При измерении резонансных частот стремятся оптимизировать взаимодействие возбудителя и приемника колебаний с ОК таким образом, чтобы эти  [c.165]

Колеблющиеся ПЭП и ОК можно представить как две связанные колебательные системы. Чем слабее связь этих систем, тем точнее резонансные частоты ОК соответствуют режиму свободных колебаний. Выбирая контактную жидкость с малым значением волнового сопротивления илн делая ее толщину равной нечетному числу четвертей волны, ослабляют связь колеблющихся систем. Однако при этих условиях генератор слабо реагирует на резонансы колебаний ОК, т. е. резонансные пики слабы. В этом состоит принципиальный недостаток контактного резонансного метода с регистрацией резонансных частот по изменению режима колебаний контура генератора.  [c.168]

Благодаря большой чувствительности УЗ-волн к изменению свойств среды с их помощью регистрируют дефекты, не выявляемые другими методами. Возможны различные варианты УЗ-методов, осуществляемые в режиме бегущих и стоячих волн, свободных и резонансных колебаний, а также в режиме пассивной регистрации упругих колебаний, возникающих при механических, тепловых, химических, радиационных и других воздействиях на объект контроля. При обработке информации могут быть определены различные характеристики УЗ-сигналов - частота, время, амплитуда, фаза, спектральный состав, плотности вероятностей распределения указанных характеристик. Наконец, простота схемной реализации основных функциональных узлов позволяет соз -дать простые и легко переносимые приборы для УЗ-контроля, имеющие автономные источники питания, рассчитанные на многие месяцы работы в полевых условиях. Отмеченные достоинства УЗ-метода в полной мере реализуются при проектировании и эксплуатации УЗ-приборов и систем НК только при правильном и достаточно глубоком понимании физических основ УЗ-контроля. Даже при автоматизированном УЗ-контроле остается значительной роль человеческого фактора в определении оптимальных условий контроля, интерпретации его результатов и обратном влиянии контроля на технологический процесс. Не менее важным является и дальнейшее развитие УЗ-метода с целью улучшения основных показателей его качества - чувствительности и достоверности - применительно к конкретным задачам технологического и эксплуатационного контроля.  [c.138]

В настоящее время обычно определяются только резонансные частоты амортизированного насоса и первая собственная частота ротора. Исследования показывают, что в ряде случаев, особенно в многоступенчатых центробежных насосах, расчеты графо-ана-литическим методом [89] приводят к существенно завышенным значениям собственных частот. В связи с этим рекомендуется использовать более точные методы [19, 94]. При этом целесообразно рассчитывать несколько первых собственных частот ротора и не допускать их близости как к частоте вращения, так и к лопастной частоте. На практике наблюдались случаи усиленной вибрации роторов с лопастной частотой при невыполнении этого условия. Наиболее полные методы расчета системы ротор—корпус на свободные и вынужденные колебания изложены в работах [128, 1291.  [c.177]

Метод исследования резонансных колебаний стержневого элемента состоял в гармоническом возбуждении его и определении амплитудно-фазовой характеристики для свободного конца при изменении частоты возбуждения в диапазоне соответствующей собственной частоте системы для К-Ш резонансной формы колебания (А = 1, 2 и т. д.). Амплитудно-фазовая характеристика строится по ряду точек, каждая из которых характеризует стационарный колебательный режим.  [c.177]

Локальный метод свободных колебаний. Согласно этому методу (рис. 21, д) в части контролируемого изделия, например в слоистой панели, возбуждают механические колебания с помощью ударов молоточка вибратора и анализируют спектр возбуждаемых частот. В дефектных изделиях спектр, как правило, смещается в высокочастотную сторону. К этой же группе относится способ, получивший сокращенное название Предеф [50]. Сущность его состоит в возбуждении через слой жидкости вынужденных колебаний в стенке изделия с частотой, близкой к резонансной. После окончания возбуждения стенка продолжает колебаться в свободном режиме. По частоте этих свободных колебаний с очень высокой точностью измеряют ее толщину.  [c.203]

Различают пять основных методов У. д. эхо-метод, теневой (или метод сквозного нрозвучивания), резонансный, имнедан-сный и метод свободных колебаний. Последние два метода относятся к акустической дефектоскопии. В табл. 2 приведены нек-рые данные, показывающие разнообразие переменных параметров, используемых в различных методах У. д.  [c.374]

В методе свободных колебаний собственные частоты находят по осцилло1раммам процесса затухающих колебаний жидкости в баке либо гидродинамической силы. Свободные колебания жидкости или системы бак - жидкость создают на тех же установках возбуждают резонансные колебания и снимают возбуждение.  [c.373]


Существует несколько методов ультразвуковой дефектоскопии эхоимпульсный, теневой, зеркально-теневой, резонансный, импедансный, велосимметрический, метод свободных колебаний из них наиболее распространены эхоимпульсный и резонансный.  [c.120]

К числу основных методов ультразвуковой дефектоскопии относятся эхометод, теневой, резонансный, велосимметричный (собственно ультразвуковые методы), импедансный и метод свободных колебаний (акустические методы).  [c.549]

Широкое признание надежности ультразвуковой дефектоскопии привело к необходимости создания метода количественной расшифровки показаний дефектоскопов. В результате контроля должны быть указаны не только наличие или отсутствие дефектов, но также и размеры их, по крайней мере в области допустимых по техническим условиям. Из рассматриваемых пяти методов ультразвуковой дефектоскопии только резонансный метод при измерении толщин дает возможность количественного определения дефекта (в данном случае отклонения от номинального размера). В теневом и в зхометоде так же, как и в акустических методах — импедансном и свободных колебаний, прямой связи между показаниями индикатора и размерами обнаруженного дефекта обычно нет. Поэтому необходимо изучить зависимость показаний от размеров дефекта при различных условиях его обнаружения. К таким условиям относятся глубина залегания и ориентировка дефекта, тип дефекта, свойства контролируемого материала (коэффициент затухания ультразвуковых колебаний, уровень структурной реверберации) и ряд других. Теоретический анализ таких зависимостей и аналитическое выражение их является весьма сложной задачей. В СССР ведутся работы по созданию теоретических основ ультразвуковых и акустических методов.  [c.112]

Метод свободных колебаний основан на анализе час тотного спектра свободных колебаний в системе, возбужденной резким ударом. Частота колебаний будет равна резонансной частоте данного тела. Метод свободных колебаний — один из наиболее старых из всех методов дефектоскопии. Р 1м давно пользуются при проверке изделий из стекла, фарфора, керамики и хрусталя. Слегка ударив по изделию, по его звучапню можно определить, есть в нем трещина или нет. Изменение тона звучания свидетельствует о том, что имеется дефект. Безусловно, такая проверка носит субъективный характер, только опытный контролер может более или менее точно обнаружить дефект. Однако нынешнее массовое производство не может удовлетвориться таким в общем-то дедовским способом контроля. Оно нуждается в более объективном и, главное, более производительном методе.  [c.106]

Локальный метод вынужденных колебаний обычно называют резонансным методом. В стенке изделия с помощью пьезопреобразователя возбуждают ультразвуковые волны (рис. 2.5, б). Частоту колебаний модулируют фиксируют частоты, на которых возбуждаются резонансы колебаний. По резонансным частотам определяют толщину стенки изделий и наличие дефектов. Дефекты, параллельные поверхности изделия, вызывают погрешность измеряемой толщины, а расположенные под углом к поверхности — исчезновение резонансных явлений. Для высокоточного измерения толщины труб также применяют локальный метод свободных колебаний, получивший название метод предеф.  [c.99]

Возбуждение колебаний конструкций проводится простейшими способами - при помощи одной силы (или момента), приложением импульсов, заданием начального прогиба, а искомые характеристики находятся путем анализа экспериментальных частотных характеристик или переходных процессов. К таким методам анализа относятся резонансный метод, метод Кеннеди-Пэнку, метод свободных колебаний и др.  [c.376]

В настоящее время отсутствуют методы, которые позволили бы воспроизвести и исследовать форму петли гистерезиса при напря-жениях, ниже предела выносливости в случае высоких частот нагружения (>30—50 Гц). В связи с этим о соответствии той или иной гипотезы о форме петли гистерезиса экспериментальным данным судят по различным косвенным измерениям (затухание свободных колебаний, температура образца, форма резонансной кривой и т. п.).  [c.83]

Акустические методы дефектоскопии основаны на законах прохождения и отражения акустических волн. По способу выявления дефектов применяют следующие акустические методы УЗК-теневой, УЗК-резонансный, УЗК эхоимпульсивный, эмиссионный, велосимметрический, свободных колебаний. (УЗК - ультразвуковые колебания).  [c.285]

Сушествует несколько методов ультразвуковой дефектоскопии, основными из которых являются теневой, импульсный, резонансный метод структурного анализа, им-педансный метод, метод свободных колебаний и др. Тот или иной метод применяется в зависимости от характерных особенностей контролируемых изделий (материал, размеры, конфигурация и т. д.), разновидностей дефектов (раковины, трещины, расслоения, непровары), а также от тех параметров, которые необходимо получить.  [c.99]

При использовании методов колебаний возбуждают свободные или вынужденные колебания либо ОК в целом (интегральные методы),. лябо его части (локальные методы). Свободные колебания возбуждают путем кратковременного внешнего воздействия на ОК, например путем удара, после чего он колеблется свободно. Вынужденные колебания предполагают постоянную связь (через преобразователь) колеблющегося ОК с возбуждающим генератором, частоту которого изменяют. Измеряемыми величинами служат частоты свободных колебаний либо резонансов вынужденных колебаний, которые несколько отличаются от свободных под влиянием связи с возбуждающим генератором. Эти частоты связаны с геометрией ОК и скоростью распространения ультразвука в его материале. Иногда измеряют изменение амплитуды колебаний при вариации частоты в широком диапазоне частот — аплитудно-частотную характеристику (АЧХ) или величины, связанные с затуханием колебаний амплитуды свободных или резонансных колебаний, добротность колебаний, ширину резонансного пика. Методы вынужденных колебаний, основанные на анализе колебаний системы ОК — преобразователь при резонансных частотах или вблизи них, называют резонансными. Различные варианты методов колебаний рассмотрены в 2.6.  [c.11]

Измерениё затухания может выполняться так же, как измерение скорости (резонансным методом, методом свободных колебаний и импульсным методом) 75 При резонансных измерениях определяется ширина резонансных пиков на определенном уровне от максимального значения амплитуды. При использовании метода свободных колебаний измеряют число периодов свободных колебаний, за которое амплитуда колебаний уменьшится до определенного уровня (например, в 2 раза). Погрешности при этих измерениях возникают в результате потерь энергии, не связанных с затуханием волн в материале (передача энергии в опоры, окружающую среду, возбуждающий элемент и т. п.).  [c.229]


Главы 7 и 8 дают основные сведения о физике и технике двух основных групп акустических методов - активных и пассивных. В главе 7 кратко рассмотрены активные методы, базируюгциеся на определении отклика объекта контроля на посылаемый извне акустический сигнал - методы сквозного ультразвукового прозвучивания, эхо-метод, метод свободных колебаний и резонансный. Это рассмотрение имеет обзорный характер, поскольку перечисленным методам посвящены отдельные монографии и учебно-справочные пособия других авторов. Глава 8 посвящена перспективному методу акустико-эмиссион-ного контроля и диагностики, и комплексу проблем, связанных с его широким применением, а также тесно примыкающей к нему вибродиагностике.  [c.7]

Методы измерения частот колебаний. Технические методы измерения частот колебаний в большинстве основаны на принципе механического резонанса. Простейший тип частотомера (на десятки и сотни герц) состоит из набора консольных пружинных пластинок, из которых каждая последующая настроена на частоту собственных колебаний несколько большую, чем предыдущая. При установке частотомера на вибрирующей конструкции в наиболее интенсивное движение приходят те пластинки, кото11ые попадают в резонанс. По частоте колебаний резонирующих пластинок определяется частота соб-ст,)енных колебаний исныт1)1ваемой кон-сТ )укции. Другой тип частотомера представляет пружинную консольную полоску переменной длины. Изменением свободной длины консоли полоска приводится в резонанс, причем резонансная частота отсчитывается но нанесенной на консоли шкале.  [c.378]

Потерн при колебаниях в материале пружины (внутреннее трение) и в опорных витках (конструкционное трение) отличаются по характеру и величине обычно потери, обусловленные действием сил сухого трения между элементами конструкции, оольше, чем внутренние потери, примерно на один порядок. Количественные характеристики получены известными методами записи свободных затухающих колебаний или оценкой ширины резонансной кривой [7, 15, 28, 30] и приведением к логарифмическому декременту колебаний на основе модели Фойхта.  [c.53]


Смотреть страницы где упоминается термин Метод свободных колебаний и резонансный метод : [c.83]    [c.112]    [c.273]    [c.4]    [c.373]    [c.54]    [c.129]    [c.363]    [c.171]    [c.202]   
Смотреть главы в:

Акустическая диагностика и контроль на предприятиях ТЭК  -> Метод свободных колебаний и резонансный метод



ПОИСК



Колебания резонансные

Колебания свободные

Метод резонансный

Метод свободных колебаний

Методы колебаний

Резонансные



© 2025 Mash-xxl.info Реклама на сайте