Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несущая способность по сопротивлению пластическим

Несущая способность по сопротивлению пластическим деформациям 486, 488  [c.625]

Несущая способность при повышенных температурах определяется либо сопротивлением ползучести, т. е. образованию развивающихся во времени пластических деформаций, либо сопротивлением хрупкому статическому разрушению, возникающему по истечении определённого времени. Несущая способность по сопротивлению ползучести может в ряде случаев определяться путём вычисления соответствующих нагрузок (см. гл. V) по характеристикам ползучести или определяться экспериментально.  [c.334]


Это состояние не будет предельным для всего стержня, так как второй участок, находящийся в упругом или в упруго-пластическом состоянии (с упругим ядром), сохранит способность оказывать сопротивление возрастающему моменту М . Несущая способность стержня исчерпается, когда и на втором участке зона пластичности распространится по всему сечению. Реактивный момент Мв при этом достигнет своего предельного значения  [c.496]

Предельное состояние по несущей способности, которая характеризуется нагрузками, соответствующими предельным состояниям по прочности, устойчивости, выносливости, сопротивлению пластическим деформациям. Эти нагрузки могут быть силами Р, моментами М, давлениями [c.335]

При оценке результатов опытов по исследованию предельного сопротивления пластичных материалов необходимо иметь в виду, что предел несущей способности образцов в виде растянутых стержней и тонкостенных трубок, подвергающихся в различных сочетаниях действию осевой растягивающей силы, крутящего момента, внутреннего, а иногда и внешнего давления, исчерпывается во многих случаях не в связи с собственно разрушением, т. е. трещинообразованием, а в связи с возникновением неустойчивости равномерного деформирования. Потеря устойчивости приводит к локализации пластических деформаций в виде шейки, наблюдаемой в обычных опытах на растяжение образцов пластичных материалов, или в виде местного вздутия в стенке трубки. Местные пластические деформации развиваются некоторое время без разрушений при снижающихся нагрузках, как это видно, например, из диаграммы растяжения образца в разрывной машине с ограниченной скоростью смещения захватов, а уже затем в зоне наиболее интенсивных деформаций возникает трещина.  [c.12]

Критерии прочности материала выбирают в зависимости от условий его работы. При статических нагрузках критериями прочности являются временное сопротивление сгв и предел текучести его,2 характеризующие сопротивление материала пластической деформации . Поскольку при работе большинства деталей пластическая деформация недопустима, то их несущую способность, как правило, определяют по пределу текучести. Для приближенной оценки статической прочности используют твердость НВ (для сталей справедливо эмпирическое соотношение Ств = НВ/3,4).  [c.224]


Предельная несущая способность де -талей конструкций при вязком состоянии материала рассматривается как такая стадия их нагружения, после которой существенное изменение размеров происходит без значительного увеличения нагрузки, т. е. наступает быстро развивающееся формоизменение. В ряде конструкций предельное состояние такого типа определяется наибольшими допустимыми остаточными перемещениями из условий сопряженной работы с другими узлами. Например, допустимая вытяжка диска турбомашины зависит от регламентируемых зазоров между ротором и корпусом. Образованию предельных состояний предшествует существенное упруго-пластическое перераспределение деформаций и напряжений, поэтому расчетное определение усилий, отвечающих предельным состояниям, требует решения соответствующих задач методами теории пластичности и в частных случаях способами сопротивления материалов. При повторном, ограниченном по числу циклов нагружении за пределами упругости перераспределение напряжений и деформаций может приводить к затуханию накопления пластической деформации, т. е. приспособляемости.  [c.5]

Несущая способность характеризуется нагрузками, соответствующими предельным состояниям детали по прочности, сопротивлению пластическим деформациям, по жесткости и устойчивости. Эти нагрузки Q могут быть силами Р, моментами М, давлениями д (и т, д.) они связаны с усилиями, возникающими при их действии в отдельных сечениях детали.  [c.434]

Коэффициент сопротивления в пластической области характеризует также влияние на несущую способность деталей при статической нагрузке ограничений по жесткости, налагаемых в соответствии с условиями эксплуатации конструкции. В случае, когда пластическая или остаточная деформация в детали не может быть допущена, Q p = Qp и = 1. Если предельно допустимые значения деформаций детали выше значений деформаций, соответствующих достижению предела текучести, то коэффициент сопротивления К, характеризует возрастание несу щей способности благодаря упруго-пластическому перераспределению напряжений в процессе деформирования. Это возрастание может быть использовано в соответствии с допустимыми перемещениями, уже превышающими упругие. Коэффициент зависит от распределения напряжений за пределами упругости и параметров диаграммы деформирования. Определение предельных нагрузок и по ним величин коэффи-  [c.440]

При кручении круглого бруса с кольцевым сечением (трубы) предельный крутящий момент (соответствующий полному исчерпанию несущей Способности стержня) определяется, так же как и для сплошного бруса, по формуле (6.17). Пластический полярный момент сопротивления Т рт, подставляемый в эту формулу, для кольцевого сечения равен  [c.705]

Наиболее важным выводом из экстремальных принципов статики идеально пластического тела являются теоремы о границах несущей способности тел, на основе которых развивается статическая теория предельного сопротивления (равновесия). Естественно предположить, что статическая теория должна обобщаться соответствующей динамической теорией. Однако постановка задач и возможные методы их решения в динамике разнообразнее и шире, причем постановка задач статики является частной по отношению к задачам динамики.  [c.69]

Несущая способность вала должна оцениваться по предельному состоянию, отвечающему возрастанию пластических деформаций при небольшом увеличении растягивающей силы и крутящего момента. Для упрощения расчета в дальнейшем используется допущение об отсутствии при пластическом деформировании упрочнения материала вала и болтов. При этом допущении расчетные предельные нагрузки соответствуют полному исчерпанию несущей способности вала, т. е. появлению возможности теоретически неограниченного роста пластических деформаций. В реальной конструкции сопротивление пластическому деформированию после достижения указанных величин нагрузок может еще нарастать, тем не менее эти нагрузки следует считать соответствующими пределу несущей способности вала, так как небольшому повышению сопротивления теперь соответствуют весьма значительные приращения пластических деформаций.  [c.379]


Так как Л зависит от температуры, то а ртакже должно зависеть от температуры. При низких температурах акр понижается и создаются условия, способствующие развитию трещин хрупкого разрушения, начинающихся от точек концентрации напряжений. В данном случае необходимо рассматривать прочность ферритных и перлитных зерен в стали в зоне у края надреза или микротрещины. Стедует отметить, что объемное напряженное состояние в поперечном сечении, ослабленном надрезом или микротрещинами, вызывает повышенное сопротивление скольжению (и повышает местный предел текучести материала). Благодаря ограниченной возможности пластической деформации и сужению поперечного сечения условный предел прочности в номинальных напряжениях надрезанных образцов повышается. Если глубина надреза и радиус закругления у его дна выбраны таким образом, что при данных условиях испытания хрупкое разрушение не может иметь места при напряжении меньше статической прочности данной стали, то надрезанный образец будет обладать более высокой несущей способностью по сравнению с гладким образцом 510  [c.510]

Связь прочности и точности центрирования цилиндрических соединений с неровностями поверхности. В гладких цилиндрических упругих сопряжениях с натягом неровности поверхности влияют на прочность соединения деталей, обеспечивающую несущую способность неразъемных и затрудняющую сборку-разборку разъемных сборочных единиц типа вал—втулка. Если в разъемных соединениях получается зазор, то неровности поверхности оказывают влияние на точность центрирования. Влияние неровностей поверхности на прочность соединения двоякое при запрессовывании вала во втулку неровности с малыми шагами частично пластически деформируются и завальцовываются, уменьшая эффективное упругое давление на поверхностях контакта и, следовательно, уменьшая силу трения по сравнению с той, которая была бы при отсутствии неровностей с другой стороны, при упругом оттеснении верхних слоев деталей во время запрес-совывания неровности двух контактирующих поверхностей входят в зацепление друг с другом, увеличивая сопротивление взаимному смещению и, следовательно, увеличивая силу трения, чему способствует еще адгезия.  [c.49]

Специфической особенностью повреждения при малоцикловой усталости, отличающей ее от обычной усталости, является накопление односторонней макропластической деформации. Эта особенность сначала порождала сомнения в приемлемости поверхностного наклепа для увеличения несущей способности деталей, работающих в условиях малоцикловой усталости. Эти сомнения базировались на том, что ППД сопровождается уменьшением запаса пластичности наклепанного слоя, тогда как способность к накоплению пластической деформации является одним из основных факторов, определяющих сопротивление малоцикловой усталости материалов и конструкций. По той же причине ставилась под сомнение устойчивость благоприятных остаточных напряжений, вызванных поверхностным наклепом. Однако в результате ряда специальных исследований (применительно к сосудам давления, подштамновым плитам прессов, корпусам подводных лодок и др.) эти сомнения были преодолены. К настоящему времени накоплен большой экспериментальный материал, подтверждающий возможность применения поверхностного наклепа для увеличения несущей способности материалов в условиях малоцикловой усталости.  [c.164]

Ki является характеристикой материала только в тех случаях, когда зона пластической деформации у вершины трещины при разрушении материала мала по сравнению с длиной трещины и толщиной образца. При малой пластической зоне поперечная де( х)рмация у вершины трещины отсутствует (е = 0) и сохраняется подобие тензоров напряжений в окрестности вершины трещины при разруи1ении тел с трещинами различных форм и размеров. Это дает возможность, определив по результатам испытаний образцов характеристику сопротивления хрупкому разрушению материала, сделать расчетную оценку предельной несущей способности конструктивного элемента с тре-  [c.20]

Попутно не вредно обсудить вопрос о так называемых константах материала, термине, широко употребляемом в механике сплошной среды. Константы или постоянные материала действительно существуют, пока материал рассматривается на уровне кристаллической решетки. Чем больше по масштабной шкале (укрупняя объем) мы уходим от параметров решетки, тем менее константы остаются таковыми. Для уяснения степени постоянства укажем на введенное Я.Б. Фридманом деление механических свойств на докритические, критические и закритические [261]. Все они в равной мере относятся к трем, последовательно возникающим и параллельно идущим вплоть до полного разрушения, видам деформации — упругой, пластической и разрушения. Докритические определяются по допуску на величину данного вида деформации или на появление нового, и это на стадии возрастающей несущей способности. Папример, условный предел текучести определяется по допуску на величину появившегося на фоне упругой деформации, нового вида деформации — пластической. Докритические характеристики можно считать постоянными материала. Па стадии упругой деформации модули упругости и коэффициент Пуассона — докритические характеристики и, следовательно, постоянные материала. По, например, критическое напряжение Эйлера сжатого упругого стержня есть механическая характеристика, отражающая свойства упругости в момент потери устойчивости и, как и положено критической характеристике, зависит не только от докрити-ческих характеристик, но и от формы и размеров стержня и условий закрепления. Аналогично предел прочности (временное сопротивление) является критической характеристикой, поскольку шейкообразо-вание представляет собой смену форм равновесия и сопровождается прекращением роста несущей способности. Естественно, что предел прочности должен зависеть и зависит от размеров, формы образца и схемы приложения нагрузки. По привычка считать предел прочности постоянной материала (естественно, имеется в виду неизменность условий нагружения, скорости, температуры, среды и т.п.) есть результат стандартизации метода его определения. Изменив габариты, форму сечения, взяв, наконец, вообще реальную конструкционную деталь, получим сильно различающиеся значения пределов прочности, что и должно быть для критической характеристики. Поэтому неудивительно, что при разрушении реальной детали напряжение в  [c.14]


Согласно СНиПу, расчет стальных балок, закрепленных от потери устойчивости, ведется по пластическому моменту сопротивления W J lЛ2W, и, таким образом, при расчете по первому предельному состоянию условие обеспечения несущей способности выражается формулой  [c.242]

Развитие исследований по процессам деформации и разрушения в механическом и физическом аспектах способствует усовершенствованию расчета деталей конструкций на прочность и жесткость. Рассмотрение предельных состояний по критерию образования пластических деформаций, жесткости инициированию и развитию трещин позволило сблизить результаты расчетов с действительной несущей способностью конструктивных элементов и соответствующими опытными данными. Тем самым были углублены теоретические и экспериментальные основы инженерных расчетов на прочность и долговечность в связи с типом и режимом напряженного состояния. Дополнения физики твердого тела и физического металловедения способствовали объяснению макроскопическик закономерностей сопротивления деформациям и разрушению, влиянию на них времени тепловых и механических воздействий. При этом намечаются пути взаимодействия механики деформации и разрушения в констануальной трактовке с физическими представлениями о поведении кристаллов и кристаллических конгломератов.  [c.517]


Смотреть страницы где упоминается термин Несущая способность по сопротивлению пластическим : [c.487]    [c.247]    [c.130]    [c.32]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.0 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.0 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.0 ]



ПОИСК



Детали Несущая способность по сопротивлению пластическим деформациям

Несущая по сопротивлению пластическим

Несущая способность

Несущая способность деталей по сопротивлению пластическим деформациям — Формул

Пластическая сопротивление

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте