Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Управление космической ракетой

Управление космической ракетой  [c.95]

СИСТЕМЫ УПРАВЛЕНИЯ КОСМИЧЕСКИХ РАКЕТ-НОСИТЕЛЕЙ  [c.30]

Решение сложнейших задач, связанных с запуском спутников и космических ракет, управлением их полетом и в случае необходимости возвращением межпланетных кораблей на Землю, было невозможно без самого близкого участия в этом деле радиоэлектроники.  [c.415]

В последние годы в зарубежной печати опубликовано несколько проектов КА длительного функционирования. Рассмотрение проекта фирмы Локхид показывает, что основными узлами конструкции аппарата должны быть цилиндрические и сферические секции, которые после вывода на орбиту отдельными элементами монтируются в единую конструкцию. При этом каждые две сферы с двумя цилиндрами между ними образуют типовой узел в виде гантели. Из трех таких гантелей, стыкуемых друг с другом в одной плоскости с помощью еще четырех цилиндров, и собирается космическая станция. Средняя гантель служит осью вращения всей станции с целью создания искусственной силы тяжести. С одной из сторон средней гантели размещается манипулятор-транспортер, стыковочный узел для космических ракет и шлюзовые камеры с входными и выходными люками для экипажей. В отсеках цилиндров средней гантели в условиях невесомости размещаются топливные баки, склады, а также вспомогательная энергетическая установка. На периферийных гантелях размещаются двигательные установки вращения станции, а также герметичные отсеки для космонавтов, аппаратуры связи, электронного оборудования и системы регенерации. Здесь же размещаются отсеки управления и ремонтные мастерские.  [c.262]


Раскрутка. Увеличение угловой скорости вращения достигается различными путями, зависящими от метода запуска. Начальная ориентация большинства космических аппаратов определяется ориентацией предыдущей ступени. Космический аппарат может отделиться от ракеты-носителя с заданной ориентацией и после отделения увеличить угловую скорость вращения с помощью газоструйных двигателей. Колебания продольной оси и неточности, связанные с раскруткой, вызывают обычно отклонения от заданной ориентации на несколько градусов. В известной мере точность этой операции может быть повышена, если увеличить скорость вращения ракеты-носителя до отделения полезной нагрузки. Иногда, правда, этот способ противоречит условиям работы системы управления ориентацией ракеты-носителя. В таких случаях полезной нагрузке можно придать вращение до отделения от ракеты-носителя с помощью вращающейся платформы, на которой полезная нагрузка устанавливается на ракете-носителе.  [c.222]

Тяга или реактивная сила — это первая основная характеристика (параметр) любого ракетного двигателя. Измеряются эти величины в единицах силы, т. е. в ньютонах (килоньютонах). По величине тяги можно судить о том, для выполнения каких задач может быть применен данный двигатель, какого веса ракету он может поднять или какой космический корабль можно этим двигателем затормозить и т. п. В зависимости от назначения двигателя его тяга может колебаться в очень широких пределах. Так, для управления полетом космического аппарата иногда достаточно тяги, меньшей ЮН. В то же время для старта мощных космических ракет требуются двигатели с тягой в тысячи тонн, т.е. разница в тяге двигателей может составлять миллионы раз.  [c.491]

Важнейшей компонентой системы управления является программное обеспечение бортового вычислительного комплекса, решающее задачи управления движением ракеты или космического корабля и задачи контроля и управления работой всех других бортовых систем летательного аппарата.  [c.32]

Идея его написания родилась у авторов в начале 1980-х гг. на основе многолетнего чтения фундаментального курса Теория космического полета и ряда прикладных дисциплин, определяющих необходимый уровень знаний и квалификацию инженера по специальности Динамика полета и управление движением ракет и космических аппаратов .  [c.4]


Нужды космической навигации в настоящее время требуют создания новой дисциплины, которая, с одной стороны, была бы несколько уже, а с другой стороны, несколько шире, чем классическая небесная механика уже в том отношении, что она не должна включать в себя такие вопросы, как динамика звездных систем и галактик, и шире в том, что она должна рассматривать новые силы, новые задачи и новые факты. Соответственно этому астродинамика должна включать в себя определенные разделы небесной механики, геофизики, аэродинамики, внешней баллистики ракет, электромагнитной теории, теории наблюдения траекторий небесных тел и космических ракет. Для удовлетворения требований космической навигации астродинамика должна изучать также вопросы управления и связи в космическом пространстве.  [c.65]

Такая сеть, к тому же, может быть использована для выработки необходимой навигационной информации для космической ракеты путем выполнения расчетов на Земле и посылки на ракету команд, выводящих ее на баллистическую траекторию движения точно к цели. Управление-движением и наведением космических ракет сначала будет выполняться полностью наземными станциями, однако в дальнейшем, когда расстояния увеличатся, а требования к точности возрастут, понадобятся космические станции, находящиеся на искусственных спутниках, Луне и планетах.  [c.617]

Огромные технические успехи в области создания современных самолетов, ракет и космических кораблей стали возможными в связи с использованием достижений аэродинамики, двигателестроения и автоматизации процессов управления летательными аппаратами.  [c.5]

Основные задачи по управлению летательным аппаратом, ориентации, автономной навигации и стабилизации решаются с помощью гироскопических приборов и систем, точность работы которых определяет эффективность действия самолетов, ракет и космических кораблей.  [c.5]

В результате выполнения программы наблюдений были получены экспериментальные данные об активном участке полета мощной ракеты-носителя, с большой степенью точности выведшей космический корабль на заданную орбиту, и проверена надежность работы систем управления и всех систем, обеспечивающих нормальные условия жизни в герметизированной кабине.  [c.435]

Радиоэлектроника в указанных случаях была призвана выполнять с помощью быстродействующих электронных вычислительных машин сложные и трудоемкие расчеты различных вариантов траекторий полета космических кораблей, путем использования телемеханических систем обеспечивать с высокой точностью вывод ракет на заранее рассчитанные орбиты, посредством комплексов радиотехнических средств наблюдения производить точные измерения координат, скоростей и других параметров движения искусственных космических объектов, передавать по радио разнообразную телеметрическую информацию с борта космических кораблей на Землю и сигналов управления с Земли на корабль, осуществлять телеграфную, телефонную и телевизионную связь и многое другое.  [c.416]

В 1903 г. К. Э. Циолковский в статье Ракета в космическом пространстве впервые высказал идею самонаведения управляемых снарядов в технически приемлемой форме. Он писал Может быть, ручное управление движением снаряда окажется не только затруднительным, но и прямо практически невозможным. В таком случае следует прибегнуть к автоматическому управлению... Возможно употребить для этой цели магнитную систему или силу солнечных лучей, сосредоточенных с помощью двояковыпуклого стекла. Каждый раз, когда снаряд с трубой поворачивается, маленькое и яркое изображение солнца меняет относительное положение  [c.383]

Предлагаемая книга содержит описание последних достижений в области ракетных двигателей на химическом топливе, включая характеристики двигательных установок, свойства топлив и технологию их промышленного изготовления, механизм горения и устойчивость, совместимость двигателя с ракетой, управление направлением и величиной тяги. Уже имеются специальные монографии и по твердым топливам [103, 178], и по жидким [67] здесь, пожалуй, впервые оба эти типа ракетных двигателей рассмотрены совместно. Кроме того, в книге показано, как изложенные теоретические принципы применяются на практике к высокоэффективным двигательным установкам (ДУ) ракет-носителей и космических летательных аппаратов.  [c.13]


Центр управления запусками расположен рядом со зданием вертикальной сборки и соединен с ним крытым переходом. Здание трехэтажное, длиной 114 м и шириной 46 м. На первом этаже Центра расположены административно-хозяйственные помещения, на втором — измерительное, проверочное и телеметрическое оборудование, на третьем — четыре поста управления, позволяющие обслуживать одновременно четыре ракеты-носителя от момента сборки до запуска (каждый из постов занимает помещение размером 42,7 х X 24 м). В этом помещении находятся около 450 пультов, с помощью которых осуществляются проверка и запуск ракеты-носителя с космическим аппаратом. Центр соединен с подвижной стартовой платформой многоканальной системой цифровой связи, которая функционирует вне зависимости от местонахождения платформы. Стартовая платформа (подвижной элемент СК) является местом сборки и запуска ракеты-носителя. Полностью собранная и испытанная ракетно-космическая система доставляется на старт в вертикальном положении вместе со стартовой платформой и кабель-заправочной башней на специальном гусеничном транспортере.  [c.75]

Важным вопросом является техника сборки орбитальных станций, которые, очевидно, будут предусматривать использование модульной структуры, составленной из секции КА, которые были ранее разработаны. Подобное стремление к унификации подсказывает и другое возможное направление реализации В частности, рационально взять за основу стандартные конструктивные блоки, масса и габариты которых обусловливаются данными определенных ракет-носителей. Выведенные на околоземную орбиту модули или блоки во многих случаях нецелесообразно оснащать индивидуальными двигательными установками и системами управления движением, необходимыми для сближения и стыковки. Можно представить принципиально иное решение проблемы. Отдельные модули или блоки будущей станции на первом этапе будут выводиться ракетами-носителями в заданный район космического пространства на определенные орбиты, где расстояния между ними могут измеряться километрами. Дальнейшую работу по сближению объектов и их сборке в единый комплекс можно выполнить специальным аппаратом, так называемым космическим буксиром. Большие запасы топлива для системы двигателей, специальные радио- и телевизионные системы позволят орбитальному буксиру совершать маневры вместе с блоками, присоединяя их к общей конструкции.  [c.263]

На затухание упругих колебаний, главным образом, влияет внутреннее трение в элементах конструкции космического аппарата. Однако может оказаться, что для обеспечения необходимого запаса устойчивости или достижения требуемого быстродействия естественного демпфирования недостаточно. В этих случаях, например в системах управления ракет-носителей, могут быть использованы пассивные или активные способы и средства борьбы с вредным влиянием упругих колебаний.  [c.148]

В поворотных системах весь двигатель, сопло или выхлопные патрубки турбины установлены в подшипниках и могут поворачиваться в пределах какого-то угла с изменением направления вектора тяги. Это наиболее распространенный способ управления (маршевые двигатели Н-1 и F-1 ракет-носителей семейства Сатурн , маршевый двигатель ВКС Спейс Шаттл SSME, RL-10, ЖРД с центральным телом), так как характеризуется минимальными потерями удельного импульса. Газовые рули и дефлекторы изменяют направление движения газового потока на выходе из сопла. Они доказали свою высокую надежность, но подвержены сильной эрозии и их применение приводит к потерям осевой тяги. Вторичньш впрыск рабочего тела (газа или жидкости) через стенку расширяющейся части сопла в основной поток продуктов сгорания приводит к возникновению косых скачков уплотнения, вызывающих изменение направления истечения части газа. Вспомогательные управляющие сопла постепенно эволюционировали к ЖРД малой тяги, которые также используются для управления космическим аппаратом и регулирования скорости полета при выключенном маршевом двигателе. Маленькие верньерные ЖРД применялись на ракетах Тор и Атлас . Они же используются в системе реактивного управления ВКС Спейс Шаттл .  [c.201]

ЖРД LE-5 предназначен для второй ступени ракеты-носителя Н-1, разработанной японским управлением космических исследований NASDA для вывода на геостационарную орбиту полезной нагрузки массой 550 кг. Разработка ракеты завершена в 1985 г. Время работы двигателя 370 с, тяга 103,5 кН, соотношение компонентов топлива 5,5 (табл. 22) [179].  [c.245]

Сердцем космической ракеты является двигательная установка. Двигательная установка - это силовой агрегат, обеспечивающий разгон ракеты до заданной скорости, но ракете необходимо не только сообщить скорость, она должна во время полета управляться. Система управления космическим летательным аппаратом имеет свои органы восприятия окружающей среды. Эти средства делают его полностью автономным. Наибольшее распространение получили системы, основанные на инерционных методах управления, т. е. на измерении линейных ускорений приборами, использующими свойство инерции материального тела (отсюда название инерциал ьные ).  [c.15]

Таким образом, система управления современных ракет-носителей или космических кораблей - это сложнейший комплекс электронных и электромеханических приборов и устройств чувствительных, измерительных, преобразующих, передающих, обрабатывающих, вычислительных и управляющих, которые объединены в единую компьютеризированную структуру, буквально пронизывающую своими связями всю конструкцию летательного аппарата и его системы.  [c.32]


В дальнейщем понятие наведения стали относить также к задачам управления движением баллистических ракет, космических ракет-носителей. пилотируемых и автоматических КА. Поскольку полет ЛА перечисленных типов является, как правило, двухфазным, т.е. включает  [c.254]

В апреле I960 года Управление баллистических ракет ВВС США подготовило на основе инициативных проектных разработок, выполненных специалистами таких ведуш их американских авиационно-космических корпораций, как Боинг , Норт Америкен , Дуглас , Рипаблик и других, обш ий замысел и план реализации программы создания военной базы на Луне, получившей название Горизонт .  [c.359]

Основываясь на сказанном выше, можно считать, что системы управления для искусственных спутников и космических ракет должны измерять начальные данные с точностью порядка 1 фут/сек по величине скорости, долей градуса по направлению вектора скорости и порядка одной мили по координатам точки вывода. Даже при указанных точностях может потребоваться последующая коррекция траектории. В таких случаях увеличение времени сглаживания на участках свободного полета позволяет значительно уменьшить ошибки радиоизмерений.  [c.638]

Дж. С. Тоз, В. Д. Брентналл и Г. Д. Менке [213] указывают, что боралюминиевые композиции могут быть применены на космических летательных аппаратах в узлах конструкций, подвергающихся нагреву от реактивной струи двигателя, в герметических кабинах экипажа, для элементов жесткости панелей с солнечными генераторами энергий, кожухов, юбок ракетного двигателя, удлинителей, промежуточных конструкций между ступенями баллистических ракет. Ими же указано, что фирмой Америкэн Рокуэлл (США) исследовано применение боралюминиевых композиций для панелей, расположенных вблизи системы управления отсека технического обслуживания космического корабля Аполлон [214].  [c.232]

В рассматриваемой работе, кроме того, исследованы энергетические возможности некоторых неракетных методов разгона (для достижения космических скоростей) различные виды жидких и твердых ракетных топлив, причем как наиболее эффективное рекомендовано кислородноводородное топливо предложены возможные значения соотношения масс для решения различных космических задач возможные значения энергетического КПД ( степени утилизации ) ракеты, а также дан общий энергетический анализ ракеты как тепловой машины затронуты проблемы управления ракетой, в частности предложено отклонение реактивного сопла двигателя.  [c.437]

Ионные двигатели основаны на ускорении ионов и их выбросе в пространство для создания тяги. Так как рубидий и цезий легко ионизируются при довольно низких температурах и обладают достаточным атомным весом, они представляются весьма перспективными в этой области. Такой двшатель (рис. 1), разработанный Льюисской лабораторией авиационных двигателей при Национальном управлении по астронавтике и исследованию космического пространства, действует следующим образом цезий подают в бойлер, где он испаряется затем атомы газовой фазы, нагретые приблизительно до 1650 , ионизируются при прохождении над горячей вольфрамовой нитью в узком пространстве, а плазма (ионизированный газ), проходя внутри ряда колец, на которые подается высокое напряжение, чтобы создать сильное электрическое поле, сильно разгоняется (рис. 2). Высокоскиро-стная ионная струя, вылетающая из двигателя, и сообщает ракете тягу [2, 5, 6].  [c.642]

Не утомляя читателя наукообразностью и в то же время не упрощая реальных физических и технических проблем, автор последовательно анализирует физико-химические и механические характеристики топлив, процессы в камере сгорания и сопле на режимах запуска, установившейся работы и выключения, рассматривает проблемы неустойчивости горения, охлаждения и управления вектором тяги, описывает современные и перспективные схемы и конструкции ЖРД и РДТТ с учетом технологических аспектов их изготовления и иллюстрирует изложение примерами применения ракетных двигателей на ракетах-носителях и космических летательных аппаратах. В тех случаях, когда это возможно, автор рассматривает жидкостные и твердотопливные двигатели совместно, что нетипично для отечественной научной и учебной литературы, но весьма желательно для расширения кругозора и улучшения взаимопонимания между специалистами по ЖРД и РДТТ.  [c.7]

ЖРД, применяемые в космической технике, по своему назначению можно разделить на три категории для выведения на орбиту, для межорбитального перехода и для управления положением на орбите. Из маршевых ЖРД, используемых для выведения, будут рассмотрены только кислородо-водородные — от двигателей небольших тяг (RL-10, НМ-7 и LE-5) до маршевого двигателя ВКС Спейс Шаттл с последующим сравнением их параметров. Мощные двигатели стартовых ступеней ракет-носителей типа F-1 неоднократно описывались в литературе и здесь рассматриваться не будут. Ожидается, что на ракетах-носителях следующего поколения вместо них будут использоваться ЖРД, подобные тем, схемы которых рассмотрены в гл. 9.  [c.243]

Фенолоформальдегидные смолы, армированные полиамидными волокнами, были первыми материалами, использованными в качестве абляционной теплозащиты головных частей ракет и возвращаемых космических аппаратов. В американском патенте [7] описан абляционный материал на основе эпоксидно-кремнийоргани-чеокого связующего и кварцевых волокон, предназначенный для теплозащиты головных частей ракет, не образующей в процессе абляции ионов, нарушающих системы управления. Британский патент [8] содержит описание пожарнобезопасных топливных баков самолетов, заполненных пенопластом с открытыми порами таким образом, что только 10—15% пространства баков остается свободным. Топливо, в котором набухает пенопласт, не вытекает из бака при его повреждении. Полиэфирные стеклопластики и пено-полиуританы были использованы для изготовления макета в натуральную величину англо-французского тренировочного истребителя Ягуар для показа на открытом воздухе. Реальный истребитель стоит около 1,5 млн. фунтов стерлингов.  [c.418]

С помощью монтажных средств и кранового оборудования осуществляются сборка космических средств и подача их на пневмовакуумные испытания. Такие испытания проводятся с целью выявления негерметичности всех гидро- и газопроводов и герметичных отсеков ракет-носителей и космических аппаратов. Электрические испытания проводятся с целью определения целостности всех электрических цепей и правильности функционирования систем управления и всех элементов с электропитанием.  [c.9]

Командный пункт обычно представляет собой находящееся под землей четырех- или пятиэтажное здание, начиненное электроникой и десятками километров кабеля. Отсюда ведется управление всей предстартовой подготовкой к пуску и выдается команда на запуск ракет-носителей и космических аппаратов.  [c.11]

В самых общих чертах технология работ на старте сводится к следующему. Ракетно-космическая система на транспортно-установочном агрегате тепловозом доставляется на стартовый комплекс. Установщиком ракета-носитель с космическим аппаратом переводится в вертикальное положение и к ней подводятся четыре опорные фермы. Смыкается силовое кольцо, и на него передается масса ракеты, опускается стрела установщика, и установщик отъезжает. Выдвигается кабина обслуживания, поднимаются в рабочее вертикальное положение фермы обслуживания. Подключаются все виды питания, заправочные коммуникации, связь, управление, термоста-тирование, телевидение и т.д. Проводятся предстартовые проверки ракеты-носителя, космического аппарата и всех систем наземного комплекса. После этого начинаются самые ответственные операции по заправке ракеты-носителя компонентами топлива. Процесс заправки ведется дистанционно, в автоматическом режиме и непрерывно контролируется и документируется по расходам топлива, его температуре, давлению и т.д. По окончании заправки отсоединяются заправочные магистрали и приводятся в исходное состояние кабина и фермы обслуживания. Если готовится к пуску пилотируемый космический корабль, то примерно за два часа до старта производится посадка экипажа.  [c.33]


Отводятся заправочная и кабельная мачты, все системы ракеты переходят на бортовое питание и автономное управление. Компоненты топлив поступают в камеры сгорания двигателей, срабатывают зажигательные устройства, воспламеняющие топдивную смесь, начинают работу двигатели. Через секунды они выходят на режим, и ракета-носитель плавно начинает подъем. Раскрываются фермы пускового устройства, и космическая система, резко набирая скорость, с ревом и пламенем устремляется в неведомый космос.  [c.34]

Япония. Япония стала четвертой страной мира, которая со своего космодрома, своей ракетой-носителем Ламбда-48 осуществила в феврале 1970 г. запуск первого искусственного спутника Земли Осуми . Эта страна работает в космосе исключительно по национальным программам, которые осуществляются в соответствии с долговременным планом работ под руководством Национального управления по космическим исследованиям и Института исследований в области космоса и аэронавтики Токийского университета. Реализуя этот план, Япония добилась больших успехов в области космонавтики, создав ряд ракет-носителей Ламбда-48 , Ми , Н-Г Н-1Г и спутников связи, метеорологии, для исследований природных ресурсов Земли и т.д.  [c.95]


Смотреть страницы где упоминается термин Управление космической ракетой : [c.314]    [c.196]    [c.174]    [c.97]    [c.477]    [c.85]    [c.186]    [c.427]    [c.233]    [c.4]    [c.26]    [c.178]   
Смотреть главы в:

Введение в космонавтику Изд.2  -> Управление космической ракетой



ПОИСК



Космическая ракета

Ракета

Системы управления космических ракет-носителей Трунов, С. М. Вязов (ГУП НП1Л АП им. академика Н. А. Пилюгина)



© 2025 Mash-xxl.info Реклама на сайте