Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип Даламбера. Общие теоремы

ПРИНЦИП ДАЛАМБЕРА. ОБЩИЕ ТЕОРЕМЫ  [c.62]

Математически принцип Даламбера для системы выражается п векторными равенствами вида (85 ), которые, очевидно, эквивалентны дифференциальным уравнениям движения системы (13), полученным в 106. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.  [c.345]

ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ И ПРИНЦИП ДАЛАМБЕРА ДЛЯ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.280]


При движении системы эти задачи решаются в основном с помощью принципа Даламбера или общего уравнения динамики. Реакции внешних связей работающих механизмов можно определить также с помощью теоремы о движении центра масс.  [c.120]

Какие общие теоремы динамики мех. системы зашифрованы в записи принципа Даламбера  [c.185]

Теорема о сохранении энергии как следствие принципа Гамильтона. Закон сохранения энергии, полученный раньше как следствие принципа Даламбера (см. гл. IV, п. 3), может быть теперь выведен из принципа Гамильтона. Попутно при этом выводе выясняются общие соотношения, существующие между полной энергией механической системы и функцией Лагранжа L.  [c.145]

Эти же самые уравнения (87) снова вывел П. Аппель в 1899 г. опять-таки из принципа Даламбера, но следуя иному пути преобразований, чем Гиббс. Вместе с тем Аппель дал целый ряд применений найденных уравнений к динамике твердого тела и вывел общие теоремы, относящиеся к уравнениям (87).  [c.44]

Принцип Даламбера-Лагранжа и общие теоремы динамики системы материальных точек со связями  [c.124]

Динамика системы твердых тел состоит из двух томов. В первом томе, содержащем общие сведения по динамике системы твердых тел, рассматриваются моменты инерции, принцип Даламбера, движение тела относительно неподвижной оси, движение тела, параллельное неподвижной плоскости, пространственное движение, теоремы об изменении момента количеств движения, живой силы, уравнения Лагранжа, малые колебания. Первый том представляет значительный интерес с точки зрения подхода к изложению материала (например, все теоремы выводятся из принципа Даламбера наряду с обычными силами систематически рассматриваются ударные силы), а также из-за огромного числа примеров и обширной библиографии.  [c.7]

Эти два утверждения нег необходимости выводить из уравнений движения Следующая общая теорема, которая в действительности эквивалентна сформулированным выше двум теоремам, может быть легко получена с помощью принципа Даламбера.  [c.245]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]


Перейдем к изучению наиболее общих методов решения задач механики. Эти методы основываются на общем принципе — принципе возможных перемеицений, или принципе Лагранжа, так как Ж. Лагранж первый придал этому принципу законченную форму и положил его в основу статики. Обч единнв этот принцип с принципом Даламбера, Ж. Лагранж получил общее уравнение динамики, из которого вытекают основные дифференциальные уравнения движения материальной системы и основные теоремы динамики ).  [c.107]

Вариационные принципы, рассмотренные нами выше, значительно шире по содержанию, чем основные теоремы динамики. Вариационные принципы охватывают все случаи движения материальных систем, если рассматривать не только интегральные, но и дифференциальные принципы. Наиболее общими среди рассмотренных приципов являются принцип Даламбера — Лагран-  [c.209]

Принцип Длламбера. Результат, полученный в предыдущем пункте, в какой-либо из трех своих эквивалентных форм носит название принципа Даламбера ) название принцип находит свое оправдание в характере интуитивной очевидности, которой обладает это положение механики. С чисто математической стороны этот принцип, по сравнению с постулатами и общими теоремами, уже ранее установленными, не дает чего-либо нового, так как по существу он сводится к номинальному истолкованию основных уравнений (8). Но с теоретической точки зрения и для исследования механических задач принцип Даламбера представляет значительный интерес, поскольку он позволяет свести постановку какого угодно динамического вопроса к статическому вопросу. Составление уравнений движения материальной системы для какой-либо динамической задачи при помощи принципа Даламбера сводится к составлению уравнений равновесия соответствующей статической задачи.  [c.267]

В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]

Математически принцип Даламбера выражается системой п векторных равенств вида (97), которые, очевидно, эквина.-тентны Д )-ференциальным уравнениям двнже 1кя системы (13), полученным в 134. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.  [c.427]

В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]


Цель этой главы — познакомить читателя с использованием вариационных методов в теории динамических систем, которые позволяют находить интересные орбиты некоторых динамических систем как критические точки некоторых функционалов, определенных на подходящих вспомогательных пространствах, образованных потенциально возможными орбитами. Эта идея восходит к идее использования вариационных принципов в задачах классической механики, которой мы обязаны Мопертюи, Даламберу, Лагранжу и другим. В классической ситуации, когда время непрерывно, источником определенных трудностей является уже то обстоятельство, что пространство потенциально возможных орбит бесконечномерно. Для того чтобы продемонстрировать существенные черты вариационного подхода, не останавливаясь на вышеупомянутых технических деталях, в 2 мы рассмотрим модельную геометрическую задачу описания движения материальной точки внутри выпуклой области. Затем в 3 будет рассмотрен более общий класс сохраняющих площадь двумерных динамических систем — закручивающих отображений, которые напоминают нашу модельную задачу во многих существенных чертах, но включают также множество других интересных ситуаций. Главный результат этого параграфа — теорема 9.3.7, которая гарантирует существование бесконечного множества периодических орбит специального вида для любого закручивающего отображения. Не менее, чем сам этот результат, важен метод, с помощью которого он получен. Этот метод, основанный на использовании функционала действия (9.3.7) для периодических орбит, будет обобщен в гл. 13, что даст возможность получить весьма замечательные результаты о непериодических орбитах. После этого, развив предварительно необходимую локальную теорию, мы переходим к изучению систем с непрерывным временем, хотя мы проделаем это только для геодезических потоков, для которых функционал действия имеет ясный геометрический смысл. При этом важной компонентой доказательства оказывается сведение глобальной задачи к соответствующей конечномерной задаче путем рассмотрения геодезических ломаных (см. доказательство теоремы 9.5.8). В 6 и 7 мы сосредоточим внимание на описании инвариантных множеств, состоящих из глобально минимальных геодезических, т. е. таких геодезических, поднятия которых на универсальное накрытие представляют собой кратчайшие кривые среди кривых, соединяющих любые две точки на геодезической. Главные утверждения этих параграфов — теорема 9.6.7, связывающая геометрическую сложность многообразия, измеряемую скоростью роста объема шаров на универсальном накрытии, с динамической сложностью геодезического потока, выражаемой его топологической энтропией, и теорема 9.7.2, позволяющая построить бесконечно много замкнутых геодезических на поверхности рода больше единицы с произвольной метрикой. Эти геодезические во многом аналогичны биркгофовым минимальным периодическим орбитам из теоремы 9.3.7.  [c.341]


Смотреть страницы где упоминается термин Принцип Даламбера. Общие теоремы : [c.2]    [c.313]   
Смотреть главы в:

Динамика системы твёрдых тел Т.1  -> Принцип Даламбера. Общие теоремы



ПОИСК



Вывод общих теорем динамики из принципа ДАламбера-Лагранжа

Даламбер

Даламбера принцип

Даламбера теорема

О неидеальных связях Принцип Даламбера-Лагранжа и общие теоремы динамики системы материальных точек со связями

Общие принципы

Общие теоремы

Общие теоремы динамики и принцип Даламбера для материальной точки



© 2025 Mash-xxl.info Реклама на сайте