Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ван-дер-Ваальса силы

Ван-дер-Ваальса силы 10, 11, 15 Вентильный эффект 91, 92 Вода адсорбированная 376  [c.552]

Различают физическую и химическую адсорбции. Физической адсорбцией называют явление, при котором молекулы адсорбируемого газа удерживаются (на расстоянии порядка 0,3 нм) у поверхности силами Ван-дер-Ваальса — силами притяжения между молекулами газа и молекулами адсорбирующего твердого тела, в результате чего происходит обмен энергией между твердым телом и газом.  [c.81]


Ван-дер-Ваальса сила 56, 57, 60, 65 Взвешивание гидростатическое 18, 78-81  [c.207]

Соединение металлических частиц с поверхностью детали и между собой носит в основном механический характер - за поры и специально подготовленный профиль в виде рваной резьбы. Имеются силы физического взаимодействия (например, силы Ван-дер-Ваальса), силы металлической связи за счет коллективизации валентных электронов и связи ковалентного типа.  [c.338]

Некоторые авторы считают, что адгезия обусловлена адсорбционными явлениями, причем в адгезионном сцеплении принимают участие электростатические силы, силы притяжения Ван-дер-Ваальса, силы водородной связи и силы химического сродства.  [c.217]

Явление сорбции [36, 61] возникает в результате действия сил притяжения между молекулами газа и атомами на поверхности твердого тела. Различают два вида адсорбции физическую и химическую. В первом случае силами сцепления являются только относительно слабые межмолекулярные силы типа сил Ван-дер-Ваальса, во втором происходит обмен электронами и формируются прочные химические связи между адсорбируемым веществом и твердым телом. Часто бывает так, что физическая адсорбция переходит в химическую, если температура возрастает достаточно для того чтобы обеспечить необходимую энергию активации процессу химической адсорбции.  [c.89]

Кроме двух наиболее типичных химических связей — ковалентной и ионной различают межмолекулярные связи, возникающие вследствие действия универсальных сил Ван-дер-Ваальса, и металлические связи.  [c.10]

Межмолекулярные связи действуют между любыми атомами и молекулами, но они очень малы (порядка Ю Дж/моль). Поэтому молекулярные кристаллы, обусловленные этими силами (твердые инертные газы, молекулы кислорода, азота и др.), отличаются весьма низкой температурой плавления (Не— 1,8 К, Аг — 40 К). Образование прочных структур обусловлено главным образом сильными типично химическими связями, например ковалентной, а силы Ван-дер-Ваальса служат лишь небольшой добавкой . Силами Ван-дер-Ваальса обусловлены обычно адгезионные связи при склеивании, смачивании твердых тел жидкостями и т. п.  [c.10]

Сила притяжения, действующ,ая на каждый осциллятор, —R и называется силой Ван-дер-Ваальса [64].  [c.142]


Наличие сил Ван-дер-Ваальса отражает тот факт, что нейтральный изотропный атом (нейтральная молекула) может поляризоваться под влиянием электрического поля, причем даже два нейтральных изотропных атома индуцируют друг в друге малые дипольные электрические моменты. Происхождение сил Ван-дер-Ваальса можно объяснить исходя из следующих простых соображений. В атомах инертных газов внешние электроны образуют очень прочные устойчивые группировки из восьми электронов в состояниях вследствие чего на движение электронов слабо  [c.65]

Итак, силы Ван-дер-Ваальса являются основными силами притяжения в случае кристаллов химически неактивных атомов и между молекулами с насыщенными связями в молекулярных кристаллах. Строго говоря, силы Ван-дер-Ваальса не являются чисто парными силами, как это предполагается при вычислении энергии сцепления с использованием потенциала Леннарда— Джонса. Ясно, что при взаимодействии двух атомов присутствие рядом третьего вызывает перераспределение положительных и отрица-  [c.69]

Двухвалентные ионные кристаллы должны иметь большую энергию связи, чем одновалентные, поскольку теперь А=(2е) = 4е2. Притяжение, обусловленное силами Ван-дер-Ваальса, дает относительно малый вклад в энергию связи ионных кристаллов, что составляет 1—2% этой энергии. Силы Ван-дер-Ваальса являются главенствующими и обеспечивают взаимодействие (притяжение) между атомами в кристаллах инертных газов, а также во многих кристаллах органических веществ. Кристаллы, связи в которых обусловлены силами Ван-дер-Ваальса, обладают структурой с максимально возможным числом ближайших соседей.  [c.25]

Связь между атомами в кристалле почти полностью обеспечивается силами электростатического притяжения между отрицательно заряженными электронами и положительно заряженными ядрами. Роль сил магнитного происхождения очень незначительна, а гравитационными силами вообще можно пренебречь. Задав пространственное распределение электронов и ядер в кристаллах и распределение их скоростей (это в принципе можно выполнить методами квантовой механики), можно рассчитать энергию связи в кристалле. Такие специальные понятия, как энергия обменного взаимодействия (обменная энергия), силы Ван-дер-Ваальса, резонансная энергия стабилизации, ковалентные силы, используются только для обозначения сильно различающихся ситуаций.  [c.25]

Модель межмолекулярного взаимодействия твердых непроницаемых сфер часто используется в вычислениях благодаря ее простоте, но она дает лишь грубое представление о больших короткодействующих силах отталкивания. Эта моде.ть хорошо оправдывается при высокой температуре, когда взаимное притяжение молекул становится несущественным (например, в случае горячих пороховых газов). Величина а определяется методом приравнивания объема сферы объему молекулы по уравнению Ван-дер-Ваальса.  [c.296]

Водородная связь возникает в результате сильного обобществления электрона атома водорода одним атомом и притяжения ядра атома водорода (протона) другим электроотрицательным атомом. Металлическая связь осуществляется обобществленными электронами, образующими в металле электронный газ. Молекулярная связь осуществляется силами Ван-дер-Ваальса.  [c.333]

Молекулярная связь. Если электроны сильно связаны с атомом, то осуществление какой-либо из перечисленных выше связей оказывается затруднительным. Такая ситуация возможна, например, для инертных газов. Тем не менее при подходящих условиях они могут быть переведены в жидкое и твердое состояние. Ответственные за это силы называют силами Ван-дер-Ваальса. Это очень слабые силы притяжения между флуктуирующими дипольными моментами атомов и молекул, возникающими в результате движения электронов в атомах и молекулах.  [c.334]


Для мягких (т, е. сжимаемых) атомов т = , п = 3 и тах=1,41 или Агтах=0,41 Го- Когда отталкивание связано с перекрытием электронных оболочек, что характерно для металлов и ионных кристаллов, атомы менее сжимаемы, величина п возрастает и достигает 11. Для п=11 и т = 1 Агтах=0,2го. В случае, если и=11, т=6 (силы Ван-дер-Ваальса), подстановка /п и п в (6) дает Агтах= =0,115/ о. Таким образом, в зависимости от типа связи кристаллической решетки напряжение о, получаемое из (4)  [c.18]

Модель газа Ван дер Ваальса предполагает, что все молекулы в объеме газа находятся в окружении соседних молекул и силы их взаимодействия нейтрализуются. Полной нейтрализации нет лишь в двух молекулярных слоях,  [c.65]

Молекулярная связь существует между отдельными молекулами за счет электростатического притяжения имеющихся в них зарядов противоположных знаков (силы Ван-дер-Ваальса). Эти связи удерживают вместе молекулы во многих органических соединениях типа полиэтилена и т. п. Ввиду слабости молекулярных связей эти вещества легко разрушаются при тепловом движении молекул и поэтому имеют низкие температуры плавления и кипения. Особым видом молекулярной связи является водородная связь, осуществляемая через ион водорода (протон), расположенный между двумя ионами (например. О. Р, СГ) соседних молекул она присутствует, например, в воде,  [c.7]

Для идеального газа учитываются только силы отталкивания в виде размера жесткой молекулы, так что зависимость Нп(х) в этом случае можно представить так, как это показано на рис. 4.2, в. Если учесть и силы притяжения в соответствии с потенциалом на рис. 4.2,г, то получим газ Ван-дер-Ваальса (на рисунке d — расстояние между сталкивающимися молекулами, равное диаметру молекулы). Уравнение состояния для такого газа легко вывести из уравнения Клапейрона, если учесть силы отталкивания, обусловленные собственным объемом молекул, и силы притяжения, которые проявляются в виде некоторой добавки к давлению. Если рассматривать только парные взаимодействия, то, как видно из рис. 4.2, г, для каждой из двух соударяющихся молекул объем сферы радиусом d (пунктирная окружность) является недоступным этот объем равен учетверенному объему взаимодействующих молекул. Следовательно, вместо объема v для 1 кг реального газа имеем меньший объем (и—Ь), где Ь — учетверенный суммарный объем молекул. В отличие от сил отталкивания, которые проявляются лишь при взаимодействии, силы притяжения являются дальнодействующими и охватывают своим влиянием группу молекул. В целом это приводит к некоторому ослаблению воздействия газа на окружающую стенку  [c.102]

Межмолекулярная связь наблюдается у благородных газов, переведенных в твердое состояние при низких температурах (Ne, Аг, Кг, Хе). Низкие температуры плавления и кипения этих газов указывают на то, что силы притяжения между атомами у них малы и обусловлены поляризационными силами или силами Ван-дер-Ваальса.  [c.14]

Простейшим уравнением реального газа, учитывающим как собственный объем молекул, так и силы взаимодействия между ними, является уравнение, предложенное в 1873 г. Ван-дер-Ваальсом  [c.23]

Попытка точно описать свойства реальных газов с помощью простого уравнения (1.16) не привела к желаемым результатам. Сравнение значений, рассчитанных по (1.16), с экспериментальными данными показывает их большое расхождение, особенно при больших плотностях газа. Это говорит о том, что уравнение (1.16) только качественно отражает поведение веществ и для точных расчетов не пригодно. Поэтому в настоящее время уравнение Ван-дер-Ваальса не применяется для обработки и обобщения экспериментальных данных. Однако иногда, когда речь идет об анализе некоторых закономерностей поведения реальных газов, это уравнение применяют в силу его простоты для качественной оценки.  [c.26]

Константа а характеризует силу притяжения молекул и пропорциональна значению потенциальной энергии взаимодействия двух молекул. Константа Ь выражается в единицах объема и характеризует уменьшение свободного объема, в котором движутся молекулы вследствие конечности их размеров. Уравнение Ван дер Ваальса лишь приближенно описывает свойства реальных газов, особенно при больших плотностях газа.  [c.11]

Уравнением состояния газа, в котором учтено влияние сил взаимодействия между молекулами, является уравнение Ван-дер-Ваальса.  [c.53]

Уравнение Ван-дер-Ваальса,. хотя и учитывает силы взаимодействия и объем молекул, является все же приближенным. Действительные свойства газов оказываются значительно сложнее. Для повышения точности были предложены различные поправки к уравнению Ван-дер-Ваальса и в результате получены новые уравнения состояния.  [c.55]

Поправка а учитывает силы взаимного притяжения, или так называемое внутреннее давление газа. Ван-дер-Ваальс принял его равным a/v . Для сильно разреженных газов, когда удельный объем велик, alv Р, Ь v, т. е. уравнение Вап-дер-Ваальса превращается в уравнение Клапейрона.  [c.13]

Различные значения п соответствуют различным типам взаимодействий. В случае, если возмущение вызывается свободными электронами и ионами и возмущаемая частица обнаруживает линейный эффект Штарка, л = 2 для квадратичного эффекта Штарка п = А в случае взаимодействий между нейтральными частицами с силами Ван-дер-Ваальса л = 6. При п = 2 контур линии симметричен и не смещен по отношению к ее первоначальному положению. При л — 4 и п 6 происходит сдвиг линии. Значения ширины линий Av и их сдвигов 0V для всех трех случаев приведены ниже )  [c.498]


Из всех возможных направлений исследований предпочтение в университете отдавалось экспериментальной физике. Отчасти это объяснялось тем, что здесь работали крупные ученые Лоренц (вспомните преобразования Лоренца — фундамент теории относительности А. Эйнштейна) и Ван дер Ваальс ( силы Ван дер Ва-альса ). Особенного развития физические исследования достигли при Гейне Камерлинг-Оннесе, по сути дела превратившем весь университет во всемирно известную Лейденскую лабораторию низких температур, позже названную его именем.  [c.146]

Дерягина Б, В. и Кротовой Н. А,) лежат электрические силы. В зависимости от природы контакта и характера процесса его нарушения основную роль в адгезии твердых тел люгут играть силы Ван-дер-Ваальса, силы гомео-полярной связи, возникающие между молекулами поверхностей, и электростатические силы, возникающие в результате образования на контакте двойного электрического слоя. Всякое взаимодействие обусловлено химической природой молекул и образованием в результате этого на границе контакта мощных электрических слоев, вследствие чего появляется значительная электростатическая составляющая сил адгезии. Таким образом, адгезия — это результат действия электростатических и ван-дер-ваальсовых сил при этом электростатическая слагающая сил адгезии целиком определяется двойным электрическим слоем, который всегда возникает при контакте разнородных тел. Возникновение двойного электрического- слоя есть косвенный результат ориентированной адсорбции полярных функциональных групп полимера (рис. 245). Ориентация последних изменяет разность потенциалов между фазами, что и приводит к образованию двойного электрического слоя.  [c.454]

Внутренний вириал будгт состоять из двух частей первая из них, 11 , связана с силами, действующими во время столкновения двух молекул, а вторая,, — с принятыми ван-дер-Ваальсом силами притяжения.  [c.406]

Если, кроме того, считать, что существуют предполагаемые ван-дер-Ваальсом силы притяжения и учесть их, как и прежде, то после подстановки всех значений в уравнение (145) мы получим следующее уравне1ше для единицы массы газа  [c.419]

Линейные полимеры образуют сагиую большую группу полимерных материалов Тан пак связь между молекулярными цепями обусловлена силами Ван-дер-Ваальса, которые невелики, прч повышении температуры полимеры этого вида легко размягчаются и превращаются в жидкость. Линейные полимеры являются основой термопластических материалов (термопластов). Типичными представителями линейных полимеров являются полиэтилен, полипропилен, политетрафторэтилен и др. Вследствие цепной структуры полимеры можно легко вытянуть в высокопрочные волокна.  [c.18]

Советс1<ие ученые М. П. Вукалович и И. И. Новиков в 1939 г. предложили новое универсальное уравнение состояния реальных газов, качественно отличное от уравнения Ван-дер-Ваальса. При выводе своего уравнения авторы учитывали указанное выше явление силовой ассоциации молекул под влиянием межмолекулярных сил взаимодействия.  [c.47]

Другим примером процесса агломерации является адгезия твердых частиц на твердой поверхности. Показано [1291, что на адгезию влияют такие факторы, как силы Лондона — Ван-дер-Ваальса, влажность, качество поверхности, изменение проходного сечения канала, время контакта, статическое электричество, вязкие свойства покрытия, температура и т. д. Многими авторами, в том числе Бредли [68, 691, рассматриваются силы Лондона — Ван-дер-Ваальса между частицами, а также между частицей и поверхностью. Влияние влажности изучалось на примере небольшого содержания жидкости между поверхностями [661. Влияние п.лощади контакта, размеров и формы частиц исследовалось в работе [4261. Время, требуемое для полной адгезии, определялось в работе [661. Визуально нетрудно убедиться в том, что адгезия и силы Лондона — Ван-дер-Ваальса имеют электрическую природу. Этот вопрос будет рассмотрен в гл. 10.  [c.267]

Одной из характерных особенностей молекулярных кристаллов является то, что частицы (атомы, молекулы) в кристалле удерживаются вместе очень слабыми силами Ван-дер-Ваальса. Энергия сцепления молекулярных кристаллов очень ма.па п составляет 0,02—0,15 эВ (сравните с энергией сцепления ионных кристаллов так, для Na l энергия сцепления порядка 8 зВ). Такие небольшие энергии сцепления обусловливают очень низкие температуры плавления этих кристаллов ( табл. 2.3).  [c.65]

Ковалентная связь имеет то же происхождение, что и связь в гамополярных молекулах (Нг, СЬ, Ь,.- ), она обусловлена обменным электронным взаимодействием между атомами. В молекулярных кристаллах (Нг, СЬ, Ь,---) ковалентная связь локализована между ядрами в молекуле, молекулы удерживаются вместе слабыми силами Ван-дер-Ваальса. Однако в случае алмаза или графита несколько валентных электронов являются общими для атома и ряда его соседей, и поэтому невозможно выделить какую-либо группу атомов, которую можно рассматривать как химически насыщенную (рис. 2.7). С этой точки зрения кристалл алмаза представляет собой огромную молекулу.  [c.75]

Одной из наиболее важных проблем статистической физики была и остается задача о фазовых переходах. Попытки ее решения восходят к работе Ван-дер-Ваальса 1873 г. [31]. В дальнейшем решение этой проблемы в той или иной степени сводится к вандерваальсовской схеме. Орнштейн, Цернике, Вейс нашли существенные стороны этого явления. После работ Каца, Улен-бека, Хеммера, Лебовица, Пенроуза и Либа стало ясно, что классическая теория описывает системы частиц, между которыми действуют силы с бесконечным радиусом притяжения, а это не соответствует реальности (что, в частности, приводит при таком подходе к появлению фазового перехода в одномерной системе).  [c.214]

МОЛЕКУЛЯРНАЯ СВЯЗЬ обусловлена силами Ван-дер-Ваальса, возникающими в результате эффекта поляризации, вызываемого полем электронов, движущихся вокруг ядра данного атома, на движение электронов вокруг ядра соседнего атома. За счет флуктуации (случайного движения электронов) у одного из сближающихся нейтральных атомов центры тяжести отрицательного и положительного зарядов разделяются и появляется дипольный момент на одном атоме, который В свою очередь вызывает такой же дипольный момент на другом. В результате энергия системы (агрегата) снижается. Силы притяжения электростатической природы компенсируются силами отталкивания, которые препят-  [c.9]

Ван-дер-ваальсовы силы слабые (меньше кулонов-ских), короткодействующие, центральные. Типичными представителями веществ являются кристаллы благородных газов и вследствие того, что силы связи малы, эти кристаллы существуют при очень низких температурах. Силы Ван-дер-Ваальса типичны для некоторых анизотропных кристаллов, образующихся из элементов IV—VII групп (см. рис. 3, б) по правилу 8—ЛА. В них между атомными слоями (рядами, молекулами) действуют силы Ван-дер-Ваальса, а между атомами внутри слоев (рядов, молекул) ковалентные связи.  [c.10]


Изменить способность металла адсорбировать ингибиторы можно введением в среду композиций, состоящих из неорганических веществ (окислителей, солей металлов) и органических ингибиторов, а также изменяя заряд поверхности металла поляризацией. Однако окисление поверхности оказывает неоднозначное влияние на адсорбцию органических веществ. На окисленной поверхности ингибиторы удерживаются лишь силами Ван-дер-Ваальса и не образуют хемосорбироваиных слоев ингибитора с металлом. Благодаря изменению заряда корродирующего металла, вызванного смещением нулевой точки от ее положения для корродирующего металла до потенциала нулевого заряда для металла, вьщеляющегося из неорганического компонента, увеличение защитного действия комбинированных ингибиторов может быть весьма значительным.  [c.145]

Отысканию зависимости между параметрами состояния реального газа посвящены работы проф. М. П. Вукаловича и проф. И. И. Новикова, которые, помимо влияния сил сцепления и объема самих молекул, учли также ассоциацию молекул, заключающуюся в объединении одиночных молекул в двойные, тройные и тому подобные сложные комплексы, на что еще в свое время указывал Ван-дер-Ваальс.  [c.105]

Простейшим уравнением состояния реального газа с учетом поправок на силы взаимодейстЕия между его молекулами и влияния объема самих молекул является уравнение Ван-дер-Ваальса (1.7)  [c.57]

Таким образом, для линий с квадратичным эффектом Штарка должен наблюдаться значительный сдвиг, приблизительно равный самому расширению линии для линий, расширенных возмущающим действием ван-дер-ваальсов-ских сил, сдвиг меньше. И ширина и сдвиг линии во всех случаях растут линейно с концентрацией атомов Nq, т. е. с давлением (при постоянной температуре). Как мы указывали в предыдущем параграфе, это подтверждается опытами. Сдвиг, вообще говоря, может происходить в разные стороны, поскольку константы могут отличаться по знаку для различных частиц в большинстве случаев он происходит в красную сторону.  [c.499]


Смотреть страницы где упоминается термин Ван-дер-Ваальса силы : [c.11]    [c.70]    [c.205]    [c.25]    [c.13]    [c.56]    [c.499]   
Теория сварочных процессов (1988) -- [ c.10 , c.11 , c.15 ]



ПОИСК



Валентность побочные (силы Ван-дер-Ваальса

Взаимодействие заполненных оболочек и силы Ваи-дер-Ваальса

Газ Ван-дер-Ваальса

Молекулярная связь силы Ван-дер-Ваальса

Силы Ван-дер-Ваальса в неоднородном диэлектрике



© 2025 Mash-xxl.info Реклама на сайте