Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полосатый спектр молекул

Исследование показывает, что последний характеризует молекулы водорода, тогда как первый, состоящий из дискретных линий, относится к атомам водорода, образовавшимся в разрядной трубке вследствие диссоциации молекулы под действием разряда. Спектры различных атомов отличаются чрезвычайным разнообразием, причем в некоторых из них, например в спектре железа, насчитывается несколько тысяч линий. Тем не менее, мы без особого труда отличаем эти богатые линиями спектры атомов от полосатых спектров молекул с определенной группировкой многочисленных линий.  [c.711]


Полосатые спектры молекул в видимой и ультрафиолетовой областях  [c.744]

Рис. 38.6. Схематическое изображение полосатого спектра молекулы. Рис. 38.6. <a href="/info/286611">Схематическое изображение</a> <a href="/info/14663">полосатого спектра</a> молекулы.
Информация о потенциале ионизации молекул включена в табл. 19.4. В этом случае минимальная энергия отвечает переходу между нулевыми колебательными уровнями основных электронных состояний молекулы и молекулярного иона и может быть названа адиабатическим потенциалом ионизации молекулы. Основными методами экспериментального определения потенциалов ионизации молекул служат методы электронного удара, фотоионизации и спектроскопического определения предела ридберговских серий в полосатых спектрах молекул. Чтобы дать представление о точности измерения значений /Р для молекул, мы сгруппировали числовые данные по четырем классам точности А — погрешность 1% В— 3% С— 10% и, наконец, D— 30%, в соответствии с оценкой использованного метода их получения. Представленные в табл. 19.4 данные основаны на материале монографий [7,8] и многочисленных журнальных публикациях последнего десятилетия.  [c.411]

О Какими физическими факторами обусловливается существование полосатых спектров молекул  [c.299]

ПОЛОСАТЫЙ СПЕКТР МОЛЕКУЛ 14. Энергетические уровни двухатомных молекул  [c.260]

Излучающие молекулы создают полосатые спектры испускания, в которых множество тесно расположенных спектральных линий образует группы — полосы, разделенные темными промежутками. Происхождение полосатых спектров молекул см. VI.3.4.4°.  [c.384]

Весь электронно-колебательный спектр в видимой и близкой к ней области представляет собой систему из нескольких групп полос, перекрывающих друг друга и образующих широкую полосу (полосатый спектр молекулы). На рис. 1.3.7 приведена фотография части спектра молекулы йода.  [c.466]

Излучение атомов и молекул. Известно, что спектры атомов — линейчатые , а спектры молекул — полосатые, т. е. состоят из  [c.356]

Полосатые спектры можно возбуждать также, заставляя газ светиться под действием соответствующего освещения (флуоресценция). Наиболее хорошо исследованы спектры двухатомных молекул. Многоатомные молекулы представляют собой обычно гораздо менее прочные соединения,так как многообразие взаимных вращений и колебаний отдельных частей такой молекулы открывает большое число возможностей распада. Поэтому возбуждение интенсивного спектра многоатомных молекул затруднительно. Вместе с тем спектры многоатомных молекул значительно сложнее, и для различения важных деталей требуется применение спектральных приборов особенно большой разрешающей силы. Совокупность обоих обстоятельств — малая интенсивность и необходимость применения приборов большого разрешения — очень затрудняет исследование спектров испускания многоатомных молекул. Приходится ограни-  [c.744]


Соотношение между различными частями полосатого спектра можно представить и несколько иначе. Вообразим, что в нашей молекуле могут изменяться только электронные состояния, а вращения и колебания отсутствуют, т. е. что энергия стационарных состояний молекулы определяется только величиной Х е- Спектр такой молекулы состоял бы, подобно спектру атомов, из линий, соответствующих электронным переходам с частотой V = (1 —и расположенных по всему спектру примерно на местах, где наблюдаются в действительности системы полос. Эти линии и намечают распределение всей серии по спектру.  [c.747]

Сколько-нибудь полная расшифровка полосатых спектров по описанной схеме удается для наиболее простых (главным образом двухатомных) молекул, где при помощи анализа молекулярных спектров удается оценить момент инерции молекулы и, следовательно, взаимное расстояние составляющих ее ядер, собственные периоды колебаний, теплоту диссоциации молекулы на атомы и т. д.  [c.747]

С этим связаны сравнительно большое расстояние между отдельными линиями полос и относительная бедность спектра линиями, затрудняющие распознавание описанной выше закономерности полосатых спектров и делающие спектры данных молекул нетипичными.  [c.748]

Полосатый спектр излучения молекул можно использовать для определения температуры плазмы. Однако вследствие сложности природы энергетических свойств молекул удовлетво-  [c.244]

Во второй половине прошлого столетия были проведены многочисленные и тщательные исследования спектров излучения. Оказалось, что спектр излучения молекул состоит из широких размытых полос без резких границ. Такого рода спектры были названы полосатыми. Спектр излучения атомов имеет совсем другой вид. Он состоит из отдельных, резко обозначенных линий. В связи с этим спектры атомов были названы линейчатыми. Для каждого элемента имеется вполне определенный излучаемый им линейчатый спектр. Вид линейчатого спектра не зависит от способа возбуждения атома. По спектру можно определить элемент, которому он принадлежит.  [c.78]

При электронном переходе изменяются также вращательно-колебательные состояния молекулы и вместо одной частоты испускается целая полоса частот, соответствующая вращательно-колебатель-ному спектру молекулы. Благодаря этому спектры молекул получили название полосатых.  [c.327]

Энергия электронов в атомах, составляющих молекулы, тоже имеет квантовые значения. Разница между ближайшими уровнями энергии электронов атомов в молекулах выше соответствующей разницы для колебательного движения атомов в молекуле, а последняя выше аналогичного значения для вращательного движения молекул. Это приводит к полосатым спектрам светящегося молекулярного  [c.229]

Энергия электронов в атомах, составляющих молекулы, тоже имеет квантовые значения. Разница между ближайшими уровнями энергии электронов атомов в молекулах выше соответствующей разницы для колебательного движения атомов в молекуле, а последняя выше аналогичного значения для вращательного движения молекул. Это приводит к полосатым спектрам светящегося молекулярного газа он состоит из близко (по частотам) расположенных линий, составляющих отдельные полосы, которые, в свою очередь, объединяются в группы полос. Переход от одной линии к другой связан с уменьшением уровня вращательной энергии, от одной полосы к другой — с изменением уровня колебательной энергии и от одной группы полос к другой — с изменением уровня энергии электронов. За счет доплеровского смещения частот и ударного уширения спектральных линий при достаточно высоких температурах отдельные линии и даже полосы могут значительно перекрываться, что затрудняет молекулярную спектроскопию. При изучении молекулярных спектров можно определить природу химических связей атомов в молекуле, их пространственное положение, природу валентных связей и реакционную способность молекул.  [c.253]

Полосатые спектры излучения молекул позволяют определить температуру пламени, соответствующую энергии колебательного (вибрационного) движения атомов в молекуле. Для этой цели находится либо отклонение интенсивностей вблизи максимумов двух полос, либо отношение их полных интенсивностей. Так как интенсивность полос колебательной структуры описывается уравнением, аналогичным (12.8), то колебательная температура определяется как котангенс угла наклона прямой, построенной в полулогарифмическом масштабе по измеренному отношению интенсивностей каждой пары полос.  [c.422]


Как отмечалось ранее (см. раздел I, 2), волновые числа являются обратной величиной длины волны в вакууме. Поэтому для точного определения электронных, колебательных и вращательных состояний молекул в см ло полосатым спектрам необходимо длины волн приводить к вакууму (см. Приложение П1), так как лин]1и стандартного спектра железа в области 2000—10 ООО А, имеющиеся в атласах и таблицах, даются для атмосферного давления воздуха. В случае ПК-спектров все стандартные длины волн уже приведены к вакууму.  [c.143]

Полосатые спектры испускания двухатомных молекул.  [c.191]

Ознакомьтесь по учебному пособию с системой энергетических состояний и полосатыми спектрами двухатомных молекул (см. I, 5, 6, 8, 10, 13). Прочтите описание спектрографа ИСП-51 и методику регистрации и измерения спектров испускания (см. II, 4-8).  [c.191]

Наряду с полосатыми- спектрами молекул, расположенными в видимой и ультрафиолетовой областях, наблюдаются также и инфракрасные спектры молекул. Опыт показывает, что инфракрасные колебательные спектры газа или пара остаются в большинстве случаев практически неизменными и при исследовании соответствующей жидкости или даже твердого тела. Причину нечувствительности этих спектров к агрегатному состоянию надо, очевидно, искать в том, что силы взаимодействия между атомами (внутримолекулярные силы) значительно больще ван-дер-ваальсовых межмолекулярных сил, обусловливающих переход из газообразного в другие агрегатные состояния. Поэтому колебания атомов внутри молекулы происходят практически одинаково как в изолированных молекулах газа, так и в сближенных молекулах жидкости или твердого тела. Излучение же полосатых спектров в видимой и ультрафиолетовой областях в основном определяется изменением электронной конфигурации молекулы, а эта последняя испытывает в случае жидкости или твердого тела вполне ощутимые воздействия со стороны соседних молекул. Но все же и для инфракрасных спектров некоторые детали, связанные главным образом с вращением молекулы вокруг ее центра тяжести, лучше наблюдаются в газообразном состоянии, ибо свобода вращения молекул в жидкостях и твердых телах в значительной степени стеснена.  [c.748]

Наиболее распространенные процессы излучения и поглощения света в среде атомных и молекулярных частиц обусловлены переходами между их электронными состояниями и могут быть подразделены на три типа 1) свободно-свободные переходы (тормозное излучение и поглощение света при рассеяние электронов на атомах и ионах, сплошной спектр) 2) связанно-свободные переходы (фотоионизация атомов и молекул и фоторекомбинация электронов на ионах и нейтральных частицах, сплошной спектр) и 3) связанно-связанные (дискретные) переходы (линейчатый спектр атомов и полосатый спектр молекул).  [c.794]

В качестве эталонного источника предлагается использовать стабилизированную водородную дугу. В отличие от дуги Болдта (см. стр. 249), сплошной спектр, излучаемый оптически тонкой плазмой, не соответствует излучению абсолютно черного тела. Интенсивность сплошного спектра может быть определена, если известна концентрация электронов и концентрация атомов водорода. При температуре дуги 13 000°К полосатый спектр молекулы водорода искажает результаты расчетов и источник  [c.251]

Известно, что оптический спектр изолированргого атома состоит из отдельных линий. При образовании молекулы оптический спектр усложняется — возникает полосатый спектр. При переходе вещества в твердое состояние изменяется характер спектра он может стать сплошным. В отличие от этого линейчатый рентгеновский спектр атома не изменяется он не зависит от того, к какому веществу относится. По-видимому, характеристические рентгеновские лучи порождаются не слабо связанными с ядром валентными (оптическими) электронами, а электронами, расположенными близко к ядру.  [c.159]

Излучение изолированных атомов, например атомов разреженного одноатомного газа или пара металла (На, Н ), отличается наибольшей простотой. Электроны, входящие в состав таких атомов, находятся под действием внутриатомных сил и не испытывают возмущающего действия со стороны окружающих удаленных атомов. Спектры подобных газов состоят из ряда дискретных спектральных линий разной интенсивности, соответствующих различным длинам волн. При исследовании газов, состоящих из многоатомных молекул, спектр получается более сложным. Так, например, в спектре водорода (На) наряду с отдельными, довольно удаленными друг от друга линиями наблюдается большое число тесно расположенных линий (так называемый многолинейчатый или полосатый спектр водорода).  [c.711]

При обсуждении спектра водорода упоминалось, что в нем наряду с дискретными спектральными линиями, составляющими серии, наблюдается ряд полос, которые при исследовании приборами с достаточной разрешающей способностью расчленяются на ряд тесно расположенных друг около друга линий, образуя так называемый многолинейчатый, или полосатый, спектр. Подобной особенностью отличаются и спектры других газов, молекулы которых состоят из двух или нескольких атомов. Наоборот, для одноатомных газов (благородные газы, пары металлов) характерны только линейчатые атомные спектры. Правда, при значительном давлении пары металлов (например Hg, 2п и др.), равно как и благородные газы, также излучают полосатые спектры, но, как показывают разнообразные исследования, при этих условиях в парах образуются нестойкие соединения типа Hg2, Пег, HgH, Сзо и т. д., т. е. молекулы, с существованием которых и связано излучение полосатых спектров.  [c.744]


Трудности наблюдения полосатых спектров многоатомных молекул и сложность их теоретической трактовки привели к тому, что спектроскопическое исследование их еще не продвинулось достаточно далеко. В дальнейшем изложении мы ограничимся двухатомными молекулами. Схематический вид и фотография типичного молеку лярного спектра испускания представлены на рис. 38.6 и 38.7 Как мы видим, он состоит из ряда линий, сгруппированных в тес ны полосы. Эти полосы, (а, Ь, с) расположены с определенной пра вильностью, образуя системы полос в свою очередь системы А, В,. . полос, разбросанные нередко по всему спектру, составляют группу, или серию, систем полос ). Фотография изображает одну из систем полос в спектре йода. Совокупность таких систем и представляет всю серию, образующую полный спектр йода.  [c.745]

Нередко молекулярные спектры бывают осложнены еще рядом деталей, однако в основном типичные черты полосатых спектров сводятся к перечисленным выше. Таким образом, епектры молекул  [c.745]

Так, Вуд, освещая пары йода, состоящие из молекул J.2, монохроматическим излучением рт утной лампы, обнаружил, что испускается крайне сложный спектр, состоящий из очень большого числа отдельных линий, точнее, пар линий, длины волн которых отличались приблизительно на 2 А. Эти пары представляют правильную совокупность, и расстояния между ними соответствуют разности длин волн в несколько десятков ангстрем. Полученная таким образом структура имеет большое сходство с системой полос, характерных для полосатого спектра, причем каждая полоса представлена двумя линиями. Замечательно, что освещение монохроматическим светом другой длины волны привело к возбуждению сходного сложного спектра, все длины волн которого были несколько изменены. Если же освещение производилось не только монохроматическим излучением, а более широким участком спектра (в несколько десятых ангстрема), то спектр испускания становился гораздо сложнее.  [c.750]

ПОЛОСАТЫЕ СПЕКТРЫ — оптич. спектры молекул и кристаллов. Возникают при электронных переходах в молекулах или межзовных переходах в кристаллах. П. с. состоят из широких спектральных полос, положение к-рых характерно для данного вещества. В спектрах простых молекул электронные полосы распадаются на более или менее узкие колебат. полосы и вращат, линии. Полосы сложных молекул чаще сплошные, лишены дискретной структуры (рис.). Полосы могут уши-  [c.28]

Вид С. о. зависит от состояния вещества. Если при заданной темл-ре вещество находится в состоянии тернодинамич. равновесия с излучением (см. Тепловое излучение), ОНО испускает сплошной спектр, распределение энергии в к-ром по Я (или V) даётся Планка законом излучения. Обычно термодинамич. равновесие излучения с веществам отсутствует и С. о. могут иметь самый различный вид. В частности, для атомов характерны линейчатые С. о., возникающие при квантовых переходах между электронными уровнями энергии (см. Атомные спектры) для простейших молекул типичны полосатые спектры, возникающие при переходах между электронными, колебат. и вращат. уровнями энергии (см. Молекулярные спектры).  [c.629]

С. с. многоатомных молекул могут получаться при переходах между совокупностями близких дискретных уровней энергии в результате наложения очень большого числа спектральных линий, имеющих конечную ширину. В таком случае при недостаточной разрешающей способности применяемых спектральных приборов линейчатые или полосатые спектры могут сливаться в С. с. М. А. Ельяшееич  [c.652]

Кроме рассмотренных полосатых спектров испускания и поглощения существуют спектры флуоресценции паров двухатомных молекул, возбуждаемые мощными монохроматическими лампами или лазерами. Если узкая монохромагическая линия совпадает с каким-либо электронно-колебательно-вращательным переходом, разрешенным правилами отбора (см. 10), то при поглощении света существенная часть молекул переходит в возбужденное электронное состояние Е/ с квантовыми числами v и J (рис. 1.34), а оттуда через примерно 10 с молекулы спонтанно переходят в нижележащие состояния согласно общим правилам отбора (см. 10). Если электронный переход относится к типу Е—2, то в спектре будет наблюдаться серия постепенно сходящихся дублетов (см. рис. 1.34). Компоненты дублетов обусловлены линиями Р- и / -ветвей (согласно правилу отбора Л/ = 1). Расстояния между дублетами примерно равны AG +mi- По схождению дублетов в сторону больших длин волн можно определить  [c.80]

Кювета для комбинационного рассеяния света 3 имеет с одной стороны плоское окно, а с другой — зачерненный рог (рог Вуда), который поглощает излучение возбуждающей линии ртути, отраженное от внутренних стенок и окон кюветы. Этот свет сильно мешает наблюдению слабого КР-спектра, Чтобы излучение от источника возбуждения не мешало наблюдению. малоинтенсивного КР-спектра, рассеянный свет фотографируется под углом 90°. Рассеянный свет от кюветы собирается и направляется на щель спектрографа 6 линзой-конденсором 7. Конденсор, как и осветитель, укрепляется на рельсе спектрографа на строго определенном расстоянии от щели. Обычно передняя часть кюветы (дно) проецируется на объектив коллиматора, а задняя (начало рога Вуда) — на щель спектрографа. Для стандартных кювет длиной около 10 см и при фокусном расстоянии конденсора /=9,5 см это.му требованию удовлетворяет расстояние от щели до задней части кюветы— примерно 33 с.м. В связи с тем что линии КР-спектра очень слабы и времена экспозиции при фотографировании достигают нескольких часов, необходимо устранить все посторонние источники света. Для этого на конденсор надеты выдвижные светозащитные кожу.хи, а кассетную часть рекомендуется прикрывать черной материей. Кроме того, необходимо устанавливать более широкие входные щели (порядка 50 мкм), чем в случае полосатых спектров испускания двухатомных молекул. В спектре ртутной лампы наряду с возбуждающей линий А=435,8 нм содержатся еще ряд более слабых линий, и в КР-спектре они могут проявляться как линии релеевского рассеяния. Для того чтобы эти линии идентифицировать на фотопластинке рядом с КР-спектром снимают также и спектр ртутной лампы.  [c.145]

Ознакомление с полосатыми спектрами двухатомных молекул и методикой расшифровки их колебательной структуры на примере спектров испускания молекул СЫ, АЮ, ВО и др., возбуждаемых в электрической дуге. Определение молекулярных постоянных (Ор, (ОеХе и энергии возбужденного электронного состояния Те- Построение кривых потенциальной энергии и оценка энергии диссоциации. Расчет по молекулярным постоянным термодинамических функций.  [c.191]

Электронная энергия двухатомных молекул. Электронные (полосатые) спектры двухатомных молекул. Колебательная и вращательная структура электронных спектров. Таблица Деландра. Определение частот колебаний. Спектральные методы определения энергии диссоциации двухато. шых молекул. Принцип Франка — Кондона на примере двухатомных молекул.  [c.267]


Смотреть страницы где упоминается термин Полосатый спектр молекул : [c.257]    [c.357]    [c.745]    [c.749]    [c.233]    [c.324]    [c.278]    [c.78]    [c.234]    [c.237]   
Смотреть главы в:

Физика ударных волн и высокотемпературных гидродинамических явлений  -> Полосатый спектр молекул



ПОИСК



Спектр молекулы

Спектр полосатый



© 2025 Mash-xxl.info Реклама на сайте