Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия и импульс источников поля

ЭНЕРГИЯ и ИМПУЛЬС источников ПОЛЯ 49  [c.49]

Энергия и импульс источников поля  [c.49]

Переходное излучение возникает в процессе изменения собственного поля источника возмущений в неоднородной среде. Какие силы совершают работу в процессе этого изменения Какой при этом сообщается упругой системе импульс Ответить на эти вопросы, позволяющие лучше понять физику переходного излучения, помогут анализируемые в данном пункте законы изменения энергии и импульса. Для простоты изложения анализ проведем на основе результатов простейшей задачи о движении нагрузки по струне, описанной в6.2Л.  [c.243]


В качестве источников энергии применяют бризантные взрывчатые вещества, газовые смеси, высоковольтные разряды в воде и импульсы электромагнитного поля.  [c.316]

Если в режиме периодически повторяющихся импульсов (кривая 2) за время между двумя соседними импульсами не успевает произойти выравнивания температуры по объему элемента, то к началу последующего импульса температурное поле (Гог, Гоз) будет определяться суперпозицией двух составляющих, соответствующих распределению источников тепла и релаксационному тепловому полю. Результирующее распределение температуры в этом случае будет зависеть от распределения плотности энергии накачки, теплопроводности среды и интенсивности теплообмена с окружающей средой. По мере поступления последующих импульсов накачки относительный вклад релаксационного поля становится все более значительным и установившееся поле температуры будет весьма сильно отличаться от распределения источников тепла. После поступления некоторого числа импульсов наступает квазистационарный тепловой режим, в котором в сходственные моменты времени каждого последующего цикла воспроизводится температурное поле. Температурные перепады в элементе при этом значительно превосходят перепады температуры, обусловленные неравномерностью накачки в режиме одиночных импульсов.  [c.14]

В п. 7 уже отмечалось, что эффект Мейсснера физически объясняется появлением в металле индукционных токов, экранирующих источники поля и не затухающих в условиях сверхпроводника. Точно так же в модели Хиггса появление массы векторного поля связано с индукционными токами в бозе-конденсате. Они не затухают со временем, а следовательно, можно сказать, что в модели Хиггса мы сталкиваемся с явлением сверхпроводимости на уровне элементарных частиц. Этот вывод прямо подтверждается на языке критерия Ландау (см. п. 7) отношение энергии квазичастицы к ее импульсу,  [c.188]

Не является в релятивистском случае М. и источником гравитац. поля, им является тензор энергии-импульса, имеющий в общем случае 10 компонент.  [c.51]

Значительный вклад в структуру и энергетику средней атмосферы и термосферы вносят также различные динамические процессы, включая волновые движения. Динамика, связанная с общей циркуляцией, обусловливает перераспределение вещества и энергии в глобальном масштабе. Она во многом определяет (через обмен массой, импульсом и энергией) общий энергетический баланс, отражая тем самым глубокие внутренние связи во всем околопланетном пространстве. Вместе с тем, важную роль в тепловом балансе различных областей и наблюдаемых пространственно-временных вариациях структурных параметров играют также динамические вариации поля давления, в первую очередь уже упоминавшиеся атмосферные приливы и внутренние гравитационные волны ВГВ). Основным источником приливов в атмосферах планет земной группы служат солнечный нагрев и гравитационное притяжение Солнца (для Земли также и Луны).  [c.42]


Мы будем предполагать, что внутри материального объема однофазной среды нет источников массы, импульса и энергии, а среда не взаимодействует с электромагнитным полем. Рассмотрение случаев движения среды с усложненными свойствами отнесено в конец этого параграфа.  [c.297]

Настоящая глава посвящена анализу автомодельной задачи о поршне в предположении, что газ является нетеплопроводным, однако на движение газа влияют нелинейные объемные источники или стоки массы, импульса и энергии. Исследование нестационарного течения газа с учетом объемных источников и стоков различной природы представляет большой интерес. Известно, например, какую роль играют при нагреве и сжатии плотной высокотемпературной плазмы энерговыделение от поглощения лазерного излучения, объемные потери энергии на собственное тепловое излучение, выделение тепла от термоядерных реакций и другие физические эффекты [78]. На сжатие и нагрев плазмы осевым магнитным полем (тета-пинч) существенное влияние оказывают потери массы через торцы плазменного шнура и торцевые потери энергии за счет продольной электронной теплопроводности [19]. Вычислительные эксперименты показали [13, 18], что процессы, происходящие в тета-пинчах, могут быть Удовлетворительно описаны в одномерном приближении при моделировании торцевых потерь объемными стоками.  [c.197]

Конечная энергия ионов должна достигать в различных проектах от 6 до 100 ГэВ. Ускоренные ионы накапливаются в накопительных кольцах, далее направляются в компрессионные кольца, где импульс сжимается по времени. Из ионных источников с помощью электростатического поля извлекаются пучки ионов с кинетической энергией от 100 кэВ до 1 МэВ, длительностью импульса от 100 мкс до 1 мс и током в десятки мА. Конечная длительность 10 не и токи десятки кА. Таким образом, фактор компрессии по длительности импульса должен составлять 10" .  [c.31]

Для формообразования заготовок толщиной до 6 мм и диаметром до 2 м в серийном производстве применяют также беспрессовую гидровзрывную и электрогидравлическую штамповку. В этом случае штамп имеет одну матрицу. Точность профиля штампованной заготовки при диаметре 2 м достигает 2—3 мм. В качестве источника энергии используют бризантные взрывчатые вещества, высоковольтные разряды в воде и импульсы электромагнитного поля.  [c.191]

Сверхпроводники и криопроводники. Явление сверхпроводимости было открыто нидерландским физиком X. Камерлинг-Оннесом в 1911 г. Согласно современной теории, основные положения которой были развиты в работах Д. Бардина, Л. Купера, Дж. Шриф-фера (теория БКШ), явление сверхпроводимости металлов можно объяснить следующим образом. При температурах, близких к абсолютному нулю, меняется характер взаимодействия электронов между собой и атомной решеткой, так что становится возможным притягивание одноименно заряженных электронов и образование так называемых электронных (куперовских) пар. Поскольку куперовские пары в состоянии сверхпроводимости обладают большой энергией связи, обмена энергетическими импульсами между ними и решеткой не наблюдается. При этом сопротивление металла становится практически равным нулю. С увеличением температуры некоторая часть электронов термически возбуждается и переходит в одиночное состояние, характерное для обычных металлов. При достижении критической температуры (Т ) все куперовские пары распадаются и состояние сверхпроводимости исчезает. Аналогичный результат наблюдается при определенном значении магнитного поля (критической напряженности Я р или критической индукции Акр), которое может быть создано как собственным током, так и посторонними источниками. Критическая температура и критическаяс напряженность магнитного поля являются взаимосвязанными величинами. Эта зависимость для чистых металлов может быЪ приближенно представлена следующим выражением  [c.122]

Разработана модель кругового источника массы, импульса и энергии в потоке вязкой жидкости. Установлено принципиальное влияние нелинейных свойств объемного источника энергии q T) на термогидродинамическую устойчивость течения и возникновение бифуркационных ситуаций. Выполнен анализ реагирования потока жидкости на управляющие воздействия, обусловленные а) трансверсальной скоростью Oj, характеризующей скольжение жидкости на сильном разрыве б) тепловым потоком qj, играющим доминирующую роль в проявлении эволюционных свойств температурно-неоднородного поля. Установлены условия появления бифуркационных нелинейностей при разнообразных условиях функционирования кругового источника. Обнаружены автоколебательный и триггерный режимы течения. Большое значение в появлении "порогов" явлений имеет не только знак, но и интенсивносгь источника (стока).  [c.131]


Установка для магнитно-импульсной штамповки (рис. 16.60) состоит из источника энергии, высоковольтного зарядно-выпрямительного устройства 1, батареи конденсаторов С, коммутирующего устройства 2 и катушки индуктивности (индуктора) 3. При разряде электрической энергии, предварительно накопленной в батарее конденсаторов установки, на индукторе вокруг его токопроводных элементов образуется мощный импульс переменного магнитного поля. Применение импульсного магнитного поля для штамповки основано на использовании сил электромеханического взаимодействия между вихревыми токами, наведенными в стенке обрабатываемой детали при пересечении их силовыми линиями.магнитного поля, и самим импульсным полем, в результате чего возникают импульсные механические силы, деформирующие заготовку. Магнитное поле, заключенное между индуктором 3 и заготовкой 4, оказывает давление как на заготовку, так и на индуктор. На пути перемещения заготовки установлен технологический инструмент (матрица, пуансон), с помощью которого заготовке придается необходимая форма.  [c.354]

В этой лазерной системе, так же как и в предыдущей (см. п. 5.4 и рис. 5.15, б), использовался телескопический HP с увеличением М = = 60. Для увеличения выходной мощности лазерной системы, представленной на рис. 5.15, б, в первом УМ активный элемент ГЛ-201 был заменен на ГЛ-201Д. Накачка обоих АЭ ГЛ-201Д осуществлялась от двухканального синхронизированного лампового источника питания ИПЛ-10-001 с ЧПИ 12,5 кГц. Мощность лазерной системы с двумя АЭ ГЛ-201Д в качестве УМ возросла до 70 Вт (мощность на выходе первого УМ составляла 30,5 Вт). Расходимость пучка излучения была равна 0,4 мрад, энергия в импульсе — 5,6 мДж, импульсная (пиковая) мощность — 370 кВт Р = Й /тимп, где W — энергия в импульсе, Ттп — длительность импульса по полу высоте). Практический КПД системы составил 0,93%, КПД усилительного каскада — 1,08%, КПД АЭ ГЛ-201 Д примерно в два раза больше — 2,15%.  [c.155]

РТГ исходит из строгого выполнения законов сохранения энергии-импульса и момента количества движения вещества и гравитационного поля (что с необходимостью приводит к псевдоевклидову миру Минковского) и из представления о гравитационном поле как физическом поле, источником которого является тензор энергии-импульса всей материи (вещество и гравитационное поле) и которое, в принципе, даже локально не может быть уничтожено выбором системы отсчета.  [c.160]

На рис. 21 ириведена функциональная схема батареи конденсаторов с элек1ромагнитиым устройством для калибровки ударных акселерометров. Это устройство может работать как по методу изменения скорости, так и по методу измерения силы. Принцип действия устройства основан на преобразовании накопленной электрической энергии в механическую при разряде батареи конденсаторов на выталкивающую катушку, которая возбуждает магнитное поле, взаимодействующее с расположенными вблизи выталкивающей катушки проводпиком-спа-рядом, сообщая ему мощный импульс ускорения. В исходном состоянии проводник-снаряд / устанавливают на. электромагнит батареи кондепсаторов2. При зарядке от источника постоянного тока 5 электронный выключатель 4 замкнут, через ограничивающий блок сопротивлений 5 заряжаются конденсаторы ё. Напряжение на конденсаторах контролируют при помощи специального измерительного контура. По достижении требуемого напряже-  [c.368]

Указанный процесс ограничения места распространения разряда заканчивается пробоем всей толщи межэлектродного пространства. При этом вещество, находящееся между электродами и только что бывщее диэлектриком, переходит в состояние проводника тока. Электроны, оторвавшиеся от катода в момент пробоя, первыми из всех предшествующих без соударений достигают анода и через образовавшийся канал сквозной проводимости проходит весь запас энергии, сосредоточенный в системе, создавая своим движением импульс тока. Возникающее при этом магнитное поле, величина которого в степенной функции зависит от величины проходящего тока, еще более сжимает канал сквозной проходимости. Все это, в конечном итоге, приводит к тому, что громадные мощности, протекая через весьма узкие каналы сквозной проводимости, обрущиваются на второй электрод—анод. Если в системе имеются реактивные элементы или действует достаточный по мощности источник напряжения, создаются благоприятные условия для затягивания импульса во времени.  [c.498]

Ниже описано импульсное диодно-конденсаторное устройство, обеспечивающее наведение большой остаточной индукции в поверхностном слое намагничиваемого изделия. Принцип действия этого устройства, как и вообще генераторов мощных импульсов, основан на накоплении энергии в электрическом поле конденсатора от источника постоянного тока небольшой мощности и кратковременной отдаче этой энергии в электрическую цепь к нагрузке.  [c.329]

О выборе величин, входящих в эту таблицу, нужно сделат несколько замечаний. Внешняя объемная сила f (например, сила тяжести) предполагается непрерывной на поверхности ст(/), Мы предполагаем, что нет ни внутреннего спина, так что Ф в уравнении импульсов состоит только из орбитального момента импульса г X V, ни поверхностных пар, так что электрические квадрупольные моменты, эффекты электричества и ферри-магнетизма выбрасываются. Рассмотрение, например, эффектов ферромагнетизма требует другой формулировки, которая будет дана в гл. 6. Приток тепла за счет излучения, например по закону Стефана — Больцмана, может быть включен как в вектор потока тепла я, так и в вектор Пойнтинга, входящий в уравнение для да . Мы предпочитаем включить этот приток тепла за счет излучения в член р/г, исключив, тем самым, из электромагнитных членов в балансном уравнении для энергии электромагнитные величины, связанные с этим типом излучения. Поэтому электромагнитные поля не содержат высокочастотных компонент, существующих при излучении тепла. Однако некоторые авторы включают эту часть излучения в я. Наконец, надо сказать, что, за исключением обсуждавшегося слагаемого в р/г, как объемные, так и поверхностные электромагнитные источники энтропии считаются отсутствующими.  [c.196]


С другой стороны, при расстояниях Л1 = 4-5 см, когда в пресной воде акустические эффекты вообще не наблюдаются, в скважине возбуждаются интенсивно упругие волны с амплитудой, не отличающейся от амплитуды импульса, возбуждаемого в скважине, заполненной раствором с соленостью 30%о, Вероятное объяснение этого факта заключается в наличии большого количества взвешенных частиц в буровом растворе, которые приводят к локальному повышению градиента электрического поля и резкому понижению пробивной прочности суспензии. Таким образом, имеется существенное различие и в качественном, и в количественном поведении преобразования энергии в акустиг-ческую при работе электроискрового источника в свободной во- де и в скважине, причем некоторые эффекты имеют пороговый характер.  [c.62]


Смотреть страницы где упоминается термин Энергия и импульс источников поля : [c.103]    [c.55]    [c.217]    [c.242]    [c.81]    [c.80]    [c.679]    [c.56]    [c.452]    [c.21]    [c.29]    [c.221]    [c.262]    [c.149]    [c.626]    [c.662]    [c.825]   
Смотреть главы в:

Исследования по 5-оптике  -> Энергия и импульс источников поля



ПОИСК



Импульс источника

Импульс энергию

Источник энергии



© 2025 Mash-xxl.info Реклама на сайте