Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Серый чугун Деформации

На рис. 81 приведены величины коэффициента гистерезиса для чугунов и сталей в функции амплитуды X колебания напряжении за цикл деформации. Циклическая вязкость серых чугунов в 5-6 раз больше, чем углеродистых сталей и в 10-20 раз. чем легированных  [c.170]

Пластической деформации в холодном состоянии поддаются мягкие и вязкие металлы (относительное удлинение 5 > 3 ч- 4%), например, стали в отожженном состоянии, медные, алюминиевые и магниевые сплавы, отожженные титановые сплавы. Ограниченно поддаются пластической деформации стали, подвергнутые нормализации и улучшению. Методы пластической деформации неприменимы для хрупких металлов (серые чугуны), а также для сталей, закаленных или подвергнутых химико-термической обработке (цементации, азотированию, цианированию).  [c.217]


Материалы условно разделяют на хрупкие и пластичные. Образцы из хрупких материалов (например, из серого чугуна) разрушаются при весьма малых деформациях, а из пластичных (например, из низкоуглеродистой стали) — при значительных деформациях.  [c.190]

Разрыв образцов из хрупких металлов происходит при весьма незначительном удлинении и без образования шейки. На рис. 107 приведена диаграмма растяжения серого чугуна СЧ 28, типичная для таких материалов. Диаграмма не имеет выраженного начального прямолинейного участка. Однако, определяя деформации в чугунных деталях, все же пользуются формулой, выражающей закон Гука. Значение модуля упругости Е находят как тангенс угла наклона прямой, проведенной через начальную точку О диаграммы в точку В, соответствующую напряжению, при котором определяют деформацию. Такой модуль называют секущим.  [c.109]

Для изготовления многих деталей машин применяется ковкий чугун (КЧ), предусмотренный ГОСТ 1215—59. Этот чугун вследствие большой вязкости отличается способностью подвергаться значительным деформациям. Ковкий чугун, как и другие его разновидности, не обладает пластичностью (не поддается ковке даже при высокой температуре), но он менее хрупок, чем серый чугун его также применяют только для отливок.  [c.240]

Рентгенографические исследования образцов поршневых колец после приработки, стабилизации износа и характеристик процесса трения показывают, что в поверхностных слоях основного металла (серого чугуна) в зависимости от типа покрытий отмечается различная степень и глубина пластической деформации, а также изменение фазового состояния.  [c.166]

Такой хрупкий материал, как, например, серый чугун, при обычной температуре не имеет предела текучести, он разрушается даже при небольшой деформации.  [c.201]

Проверочные линейки могут быть изготовлены из чугуна или из стали. Материалом для чугунных линеек служит серый чугун твердостью 150—200 //д. Сталь, применяемая для изготовления линеек, должна иметь содержание углерода не ниже 0,5%. Материал, предназначенный для линеек, должен быть подвергнут искусственному или естественному старению, чтобы линейки во время эксплуатации не изменяли своих размеров. В практике стальные линейки двутаврового сечения часто изготовляются монтажными организациями. В этих случаях можно рекомендовать для изготовления Линеек старые железнодорожные рельсы металл рельсов, подвергшийся многократным деформациям, хорошо сохраняет точность.  [c.41]


В табл. 18 приведены значения износа ползунов, изготовленных из прессмассы с тканевым наполнителем и из слоистого пластика с тканевым наполнителем, при трении по серому чугуну среднего качества [6]. Износ слоистых пластиков с тканевым наполнителем в значительной мере зависит от вида применяемой смазки (рис. 90). Линейный износ, характеризующий изменения толщины пластмассового тела, обычно включает, кроме фактического износа, еще и величину остаточной деформации [7]. При  [c.81]

Ввиду незначительности абсолютных деформаций серого чугуна они определяются обычно при испытаниях на изгиб, так как при этом получаются наибольшими. При определении стрелы прогиба выявляется суммарная деформация, т. е. пластическая и упругая. Стрела прогиба f при испытаниях на изгиб может быть принята условно (предполагая наличие пропорциональности) равной f=A- f,ij-x [121, 132], где Л — постоянная величина, аг — деформация в мм на 1 кг нагрузки. Таким образом большая / может получиться за счёт увеличения или а,  [c.22]

Серый чугун С пластинчатым графитом обнаруживает заметные пластические деформации только в условиях мягкого нагружения, например, осадка при сжатии достигает 20—40%. При жестких способах нагружения (растяжение) максимальные пластические деформации в момент разрушения серого чугуна не превышают 1—2% и составляют 0—50% от общих деформаций [3]. Сравнение кривой растяжения чугуна и стали (рис. И) обнаруживает у серого чугуна наличие изгиба уже в самом начале кривой, начиная с небольших напряжений, а также меньший угол наклона. Серый чугун не подчиняется закону Гука и ведет себя как неупругий материал.  [c.63]

Условный предел текучести может определяться в сером чугуне только при очень малых деформациях.  [c.63]

Рис п. Диаграмма деформации чугуна а — чугун с пластинчатым графитом (растяжение и сжатие) б —сравнение серого чугуна со сталью и высокопрочным чугуном (растяжение). Знак (-)-)—деформация растяжения (—) — деформация сжатия  [c.64]

Выше было показано, что упругие деформации и предел прочности чугуна при растяжении и сжатии заметно различаются. Это различие приобретает особое значение в условиях изгибающих нагрузок. При изгибе деталей из серого чугуна симметричного профиля указанное различие отношений деформации в растянутых и сжатых волокнах приводит к нарушению симметричности распределения напряжений по сечению (рис. 14). В то время как в сжатых волокнах изгибаемого чугунного бруска напряжения сжатия увеличиваются пропорционально расстоянию от нейтральной оси, в растянутых волокнах наблюдается нелинейная зависимость. Нейтральная ось смещается в сторону сжатых волокон и ее положение определяется следующими зависимостями  [c.67]

Применение чугуна с шаровидным графитом для изготовления шаботов. Ранее применявшиеся шаботы из стали деформировались — происходило вспучивание в верхней части шабота. Шаботы, отливавшиеся из серого чугуна, не обнаруживали деформаций, но и не обладали достаточной прочностью и давали трещины.  [c.163]

Серый чугун с пластинчатым азотом — Деформации 63, 64  [c.244]

Для чугуна каждой марки суш.ествуют достаточно стабильные соотношения между различными механическими характеристиками. Так, например, отношение временного сопротивления изгибу к временному сопротивлению разрыву для чугуна СЧ 18-36 равно двум. Отношение временного сопротивления сжатию к временному сопротивлению разрыву равно четырем. Пределы упругости и текучести на диаграмме испытаний не проявляются. Чугун, как известно, не подчиняется закону Гука, и остаточные деформации появляются в них при относительно малых напряжениях. Это объясняется большим количеством графитовых включений. При напряжениях, составляющих 40—50% от временного сопротивления при растяжении, остаточные деформации достигают заметной величины. Диаграмма напряжение — удлинение представляет собой кривую, почти не имеющую прямолинейного участка. Иногда условно принимают величину предела текучести серого чугуна, равную 70% величины временного сопротивления растяжению.  [c.433]


Пластинки графита уменьшают сопротивление отрыву, временное сопротивление и особенно сильно пластичность чугуна. Относительное удлинение при растяжении серого чугуна независимо от свойств металлической основы практически равно нулю ( 0,5 %). Графитные включения мало влияют на снижение предела прочности при сжатии и твердость, величина их определяется главным образом структурой металлической основы чугуна. При сжатии чугун претерпевает значительные деформации и разрушение имеет характер среза под углом 45 . Разрушающая нагрузка при сжатии в зависимости от качества чугуна и его структуры в 3—5 раз больше, чем при растяжении. Поэтому чугун рекомендуется использовать преимущественно для изделий, работающих на сжатие.  [c.148]

Низкотемпературная сварка чугуна. Горячей и холодной сваркой можно наплавлять серый чугун, по своим качествам не уступающий основному металлу. Однако эти способы пригодны для исправления дефектов, обнаруженных на ранних стадиях механической обработки. При необходимости устранения дефектов, обнаруженных на последних стадиях обработки детали (шлифование, шабрение и т. д.), рекомендуется применять способы сварки без расплавления основного металла. В этом случ е более низкая рабочая температура процесса уменьшает возможность появления деформаций, которые нельзя устранить последующей механической обработкой. Менее вероятно также появление трещин и структур отбела при охлаждении детали.  [c.106]

Наибольшее распространение получило измерение твердости вдавливанием. В результате вдавливания с достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформации заключается в том, что она протекает в небольшом объеме, окруженном недеформированным металлом. Пластическую деформацию при вдавливании могут испытывать не только пластичные, но и хрупкие металлы (например, серый чугун), которые при обычных механических испытаниях (на растяжение, сжатие, кручение, изгиб) разрушаются хрупко почти без макроскопически заметной пластической деформации. Таким образом, твердость, характеризующая сопротивление пластической деформации, представляет собой механическое свойство металла, отличающееся от других его механических свойств способом  [c.23]

При испытании на твердость можно определить количественную зависимость между твердостью пластичных металлов, установленной путем вдавливания, и другими механическими свойствами (главным образом пределом прочности). Твердость характеризует предел прочности сталей (кроме аустенитной и мартенситной структур) и многих цветных сплавов. Указанная количественная зависимость обычно не наблюдается у хрупких материалов, которые при испытаниях на растяжение (сжатие, изгиб, кручение) разрушаются без заметной пластической деформации, а при измерении твердости получают пластическую деформацию. Однако в ряде случаев и для этих материалов (например, серых чугунов) можно установить эту зависимость (возрастанию твердости обычно соответствует увеличение предела прочности на сжатие). По значениям твердости определяются некоторые пластические свойства металлов.  [c.24]

Несмотря на простоту испытания твердость НВ представляет собой довольно сложную механическую характеристику. Напряженное состояние при вдавливании шарика неоднородно, поэтому величина НВ определяет некоторое усредненное сопротивление пластической деформации различно деформированных элементов объема. Для многих металлов твердость НВ хорошо коррелирует с временным сопротивлением. Для кованой и катаной стали Ов 0,36 НВ для серого чугуна <Тв=(ЯВ— —40)/6 для стального литья сгв=(0,3-н 9,4)НВ.  [c.198]

К пластическим материалам относят конструкционные высокоотпущенные стали с удлинением при разрыве не менее 15%. К хрупким и малопластичным материалам можно отнести чугун, некоторые легированные и инструментальные стали работающие при низких температурах металлокерамические материалы. Пластичность (или хрупкость) материалов не является их постоянным свойством и зависит от физических условий, в которых происходит деформация. Так, например, серый чугун считается вообще не пластичным металлом, однако при всестороннем сжатии становится пластичным. И, наоборот, пластичные стали под действием низких температур могут быть непластичными — хрупкими.  [c.19]

Для изучения процесса гидроэрозии были проведены испытания различных металлов на струеударной установке. На основании полученных данных построены кинетические кривые, характеризующие процесс разрушения металлов (рис. 58). Характер этих кривых указывает на то, что разрушению всегда предшествует период накапливания деформаций. У хрупких и очень пластичных металлов (медь, серый чугун) при данных условиях испытания  [c.95]

Чугуны С шаровидной формой графита мало отличаются по характеру пластической деформации от серых чугунов. Повышенное сопротивление высокопрочных чугунов разрушению (по сравнению с серыми чугунами) объясняется тем, что высокопрочный чугун имеет шаровидную форму графита, которая меньше ослабляет его металлическую основу. При этом напряжения от приложенной нагрузки распределяются более равномерно.  [c.106]

Как показывают исследования, в сером чугуне с грубой формой графита деформация металла в микрообъемах начинается при сравнительно небольших нагрузках, причем металл деформируется тем интенсивнее, чем больше в чугуне графита и грубее  [c.142]


Материалы, у которых циклические неупругие деформации в области многоцикловой кривой усталости существенны (сплавы на основе железа, меди, серые чугуны, некоторые сплавы на основе алюминия и т. п.). Материалы этой группы могут быть разделены на такие подгруппы  [c.167]

Необходимо подчеркнуть, что один и тот же материал при различных деформациях обладает различной величиной предельных напряжений. Например, серый чугун имеет предел прочности при растяжении в 3 раза меньше, чем при сжатии (а ,р = 0,3а , ) и в 2 раза меньше, чем при изгибе (ст р. = 0,5Ои ) у высокоугле-  [c.154]

В. И. Тихонович и Ю. И. Короленко исследовали образцы высокопрочного чугуна в условиях трения со смазкой в контакте с серым чугуном при небольщом нагреве (до 50° С) на поверхности высокопрочного чугуна отмечены довольно значительные разрушения и отдельные сколы [67]. С ростом температуры до 120°С поверхностный слой чугуна приобретает повышенную пластичность, деформация локализуется в этом слое и поверхность выглаживается. При этом значительных разрушений поверхности не наблюдали. Дальнейшее повышение температуры материала несколько изменяет микрорельеф поверхности в сторону более значительного разрушения, а работа образцов при нагреве до температуры 245° С приводит к еще большему увеличению геометрических параметров микрорельефа пову)хности трения. Работа на последнем режиме характеризовалась высоким и неустойчивым коэффициентом трения, наблюдались явления схватывания материала. Минимальный износ соответствовал температуре нагрева 90—100 С.  [c.20]

В среднем упругие деформации серого чугуна, при испытаниях на изгиб, составляют 50—85о/о [121, 131, 134] от суммарных, причём больщая величина обнаруживается у болеепроч-ного чугуна. Абсолютная величина суммарных деформаций серого чугуна, при испытаниях на изгиб образцов длиной 600 мм, составляет  [c.22]

Упругие деформации. Упругие деформации не зависят от структуры основной металлической массыf этим связана почти полная независимость модуля упругости углеродистых сталей от их химического состава [130]). Упругие деформации зависят только от характеристики графитовых включений, поэтому упругие свойства чугуна не изменяются, если в результате термической обработки изменилась только структура основной металлической массы и не изменилась форма и величина графитовых включений (нормальный случай термической обработки серого чугуна). При увеличении содержания и укрупнении графитовых включений упругие деформации увеличиваются по своей абсолютной величине (так же как пластические деформации) и уменьшаются по относительной, выраженной впроцентахот суммарной деформации.  [c.22]

Фиг. 85. Диаграмма деформаций ковкого чугуна при растяжении ГЗ] /— серый чугун 2 — ФКЧ (по Шварцу) Л- ФКЧ 4— ПФКЧ 5- сталь (0,35 С). Фиг. 85. <a href="/info/70471">Диаграмма деформаций ковкого</a> чугуна при растяжении ГЗ] /— <a href="/info/1849">серый чугун</a> 2 — ФКЧ (по Шварцу) Л- ФКЧ 4— ПФКЧ 5- сталь (0,35 С).
Циклическое нагружение серого чугуна, в противоположность идеально упругому телу, совершается с потерей энергии, которая превращается в теплоту, и таким образом колебания гасятся (амортизируются). Графически величина потери энергии определяется площадью петли гистерезиса на кривой напряжение — деформация (рис. 26). Чем больше площадь гистерезисных петель, тем больше способность чугуна превращать энергию вибрации в тепло, выделяемое вследствие внутреннего трения. Включения пластинчатого графита в сером чугуне действуют подобно острым надрезам и вызывают повышенное поглощение энергии на внутреннее трение, связанное с пластическими микросдвигами (у надрезов) даже при самых малых напряжениях. Затухание вибрации в стали, высокопрочном и сером чугуне показано на рис. 27, а связь между прочностью и циклической вязкостью различных материалов показана на рис. 27, бив [3]. Циклическую вязкость обычно выражают в процентах как удвоенный логарифмический декремент затухания колебаний )Js = 26.  [c.73]

Газовая сварка отличается еще больщей универсальностью, чем ручная электросварка плавящимся электродом, так как она дает возможность осуществлять соединения не только деталей самой разнообразной формы и величины, но и выполнять их для деталей из различных металлов. Она обеспечивает получение качественных, хорошо сформированных швов, удобна для соединения тонкостенных и трубчатых элементов, а также обеспечивает наиболее качественную сварку серого чугуна. Ее недостатком является значительная деформация деталей, особенно при соединениях с угловыми швами.  [c.41]

После длительного пребывания в зоне высокой температуры, особенно в паровой среде, чугунная деталь несколько увеличивается в объеме. Этот процесс является необратимым, а деформации — остаточными. Чугун становится очень рыхлым, мягким и непрочным. Главной причиной роста серого чугуна являются структурные превращения. Карбид железа РезС, входящий в состав перлита, распадается. В результате этого увеличивается количество скоплений графита и его размеры. Общее разрыхление позволяет пару проникать вдоль графитовых включений и окислять всю массу чугуна. Вследствие этого объем детали еще больше увеличивается. Особенно способствует росту чугуна большое содержание в нем кремния.  [c.433]

Выбор формы и размеров наконечника, а также нагрузки зависит от целей исследования, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца. Если металл имеет гетерогенную структуру с крупными выделениями отдельных структурных составляющих, различных по свойствам (например, серый чугун, цветные подшипниковые сплавы), то для испытания твердости следует использовать шарик большого диаметра. Если металл обладает сравнительно мелкой и однородной структурой, то малые по объему участки могут быть достаточно характерными для оценки свойств металла в целом и, в частности, его твердости. В таком случае испытания можно проводить вдавливанием тела небольшого размера (например, алмазного конуса или пирамиды) на незначительную глубину при небольшой нагрузке. Подобные испытания рекомендуются для металлов с высокой твердостью, например закаленной или низкоотпущенной стали, поскольку вдавливание стального шарика или алмаза с большой нагрузкой может вызвать деформацию шарика или скалывание алмаза. Вместе с тем значительное снижение нагрузки нежелательно, так как это может привести к резкому уменьшению деформируемого объема, тогда полученные значения твердости не будут характерными для основной массы металла. Поэтому нагрузки и размеры отпечатков на металле не должны быть меньше некоторых пределов.  [c.25]

Нелинейная зависимость напряжения — деформации, соответствующая серому чугуну, способствует благоприятному распределению напряжений в образце при изгибе, а так как при вычислении напряжений на это не делается поправка, то получается показанная на рисунке оптимистическая оценка усталостной прочности. Из испытаний, проведенных Коллинзом и Смитом [148], можно сделать вывод, что влияние указанного обстоятельства возрастает с понижением предела прочности чугуна, как явствует из табл. 4.1, где собраны отношения предела выносливости при изгибе к пределу выносливости при осевом нагружении.  [c.92]



Смотреть страницы где упоминается термин Серый чугун Деформации : [c.146]    [c.169]    [c.55]    [c.77]    [c.23]    [c.65]    [c.14]    [c.48]    [c.142]    [c.91]    [c.436]    [c.105]    [c.145]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.63 , c.67 ]



ПОИСК



Сера в чугуне

Чугун серый



© 2025 Mash-xxl.info Реклама на сайте