Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы теории коррозии металлов

ЭЛЕКТРОХИМИЧЕСКИЕ ОСНОВЫ ТЕОРИИ КОРРОЗИИ МЕТАЛЛОВ  [c.1]

Шаталов А. Я. Электрохимические основы теории коррозии металлов, Изд-во ВГУ, Воронеж, 197.1, стр. 180.  [c.2]

Анатолий Яковлевич Шаталов ЭЛЕКТРОХИМИЧЕСКИЕ ОСНОВЫ ТЕОРИИ КОРРОЗИИ МЕТАЛЛОВ  [c.179]

Акимов Г. В. Основы теории коррозии металлов. Металлургиздат, 1946.  [c.199]

ОСНОВЫ ТЕОРИИ КОРРОЗИИ МЕТАЛЛОВ  [c.23]

Шаталов А. Я. Электрохимические основы теории коррозии металлов.  [c.212]


Раздел I ОСНОВЫ ТЕОРИИ КОРРОЗИИ И МЕТОДЫ УСКОРЕННЫХ КОРРОЗИОННЫХ ИСПЫТАНИЙ МЕТАЛЛОВ  [c.6]

Все эти особенности полностью исчезают в случае амальгам, поверхность которых является идеально однородной. Следует заметить, что именно опыты с амальгамными электродами послужили той экспериментальной основой, на которой впоследствии была развита современная электрохимическая теория коррозии металлов.  [c.131]

ОСНОВЫ ТЕОРИИ ЗАЩИТЫ МЕТАЛЛОВ ОТ КОРРОЗИИ ИНГИБИТОРАМИ  [c.7]

В книге рассмотрены основы теории коррозии применительно к подземным металлическим сооружениям. Изложены результаты длительных коррозионных испытаний металлов и методы оценки коррозионной активности почв. Основное внимание уделено вопросам применения различных методов защиты от подземной коррозии. Наряду с описанием свойств широко применяемых битумных покрытий и методов их нанесения приводятся результаты промышленных испытаний различных полимерных покрытий. Катодная защита подземных металлических конструкций является весьма эффективным средством борьбы с коррозией. В книге освещается теория катодной защиты и излагаются методы расчета катодной и электро-дренажной защиты.  [c.2]

А. Н. Фрумкина [18], теоретически обосновавшего новое направление электрохимического механизма растворения металлов Г. А. Аки >юва [19, 20], создавшего основы структурной коррозии металлов, теорию многоэлектродного элемента, сделавшего ряд важных теоретических и практических выводов в науке о коррозии, а также создавшего советскую школу коррозионистов  [c.50]

Это положение де-ля-Рива лежит в основе современной теории коррозии металлов в электролитах.  [c.33]

ОСНОВЫ ТЕОРИИ ЗАЩИТЫ МЕТАЛЛОВ ОТ КОРРОЗИИ ЗАМЕДЛИТЕЛЯМИ I. Общие положения  [c.42]

Изложены основы теории коррозии и защиты металлов и дано описание коррозионного поведения и методов защиты от коррозии металлов и сплавов, а также важнейших методов коррозионных исследований.  [c.2]

Теория электрохимической коррозии металлов достигла той стадии развития, когда стали возможны и необходимы обобщения с применением математических формулировок и количественных расчетов. Основы таких расчетов изложены в данной главе.  [c.265]


Основы теории химической коррозии металлов  [c.9]

Основы теории электрохимической коррозии металлов  [c.22]

Коррозионный процесс на металле и под лакокрасочным покрытием является электрохимическим по своей природе, поэтому важно рассмотреть основы теории электрохимической коррозии, взаимодействие комплексных систем покрытий с защищаемым металлом и действие пассиваторов и ингибиторов, входящих в состав покрытия.  [c.5]

Электрохимическая коррозия возникает ири контакте разнородных металлов или структурных фаз сплава с электролитом. Знание соотношения потенциалов позволяет установить сравнительную стойкость металлов против коррозии, правильно выбрать защитные металлические покрытия, устанавливать характер коррозии сплавов в зависимости от их структуры. Основой теории электрохимической коррозии технических сплавов является схема действия гальванического элемента.  [c.10]

Изучение механизма процесса коррозии металлов явилось научной, основой для работ в области изучения защитных свойств лакокрасочных покрытий. Однако, несмотря на многочисленные исследования, проводимые у нас и за рубежом, до настоящего времени не существует единой, общепринятой теории, объясняющей сложный механизм защитного действия лакокрасочных покрытий. На основании литературных данных можно сделать вывод о том, что защита металла от коррозии лакокрасочными покрытиями определяется следующими факторами  [c.144]

ОСНОВЫ ТЕОРИИ ПОЧВЕННОЙ КОРРОЗИИ МЕТАЛЛОВ  [c.7]

Средах, на основе справочного материала был правильным, конструктор или проектировщик должен знать основы теории коррозии и защиты металлов. Поэтому не случайно, что Справочник по коррозии болгарских авторов X. Рачева и С. Стефановой открывается разделом Коррозия металлов , в котором в доступной форме изложены основные положения теории коррозии и защиты металлов. Рассмотрение теоретических положений химической и электрохимической коррозии металлов, а также отдельных видов коррозии (атмосферной, подземной и др.) завершается изложением методов защиты. Большое внимание уделено ингибиторам коррозии, механизму их защитного действия и областям применения. В конце раздела дано описание коррозионного поведения основных металлов в наиболее характерных коррозионных средах.  [c.6]

Наша страна внесла значительный вклад в развитие этой научной дисциплины. Начало исследований по химической стойкости металлов по-видимому следует связать с именем М. В. Ломоносова и его наблюдением резкого скачка устойчивости (пассивности) железа при повышении концентрации азотной кислоты ( селитряного спирта ). Однако наиболее систематические и широкие коррозионные исследования в России начинают развиваться после Октябрьской социалистической революции. Здесь, в первую очередь, надо отметить акад. В. А. Кистяковского, разработавшего фильмовую теорию коррозии, чл.-кор. АН СССР Н. А. Изгарышева, изучившего ряд важнейших вопросов электрохимической коррозии металлов, акад. А. Н. Фрум-кина, теоретически обосновавшего установление коррозионных (стационарных) потенциалов и механизм гомогенноэлектрохимического растворения металлов и особенно чл.-кор. АН СССР Г. В. Акимова, залолсившего основы структурной коррозии металлов, исследовавшего ряд важнейших теоретических и практических вопросов коррозии и создавшего советскую школу коррозионистов.  [c.11]

Особенно большой вклад в развитие теории структурной коррозии был сделан Г. В. Акимовым и его школой Разработанная им теория многоэлектродны.х элементов, пможенная в основу структурной коррозии металлов, уже позволила решить ряд конкретных задач. Однако в настояш,ее время появилась необходимость учитывать не только локальные токи, но также и токи саморастворения структурных составляющих, которые обычно не принимались во внимание при построении поляризационных диа-]памм многоэлектродных электрохимических систем.  [c.33]

Научно-теоретической базой для развития науки о коррозии и защите металлов и, в частности, для разработки научных принципов создания коррозионностойких сплавов несо мненно явились более ранние исследования выдающихся советских ученых, являющихся основоположниками науки о защите металлов. Здесь в первую очередь надо отметить академика Кис-тяковского, разработавшего фильмовую теорию коррозии [1], члена-корреспондента Изгарышева [2], изучившего ряд важных вопросов электрохимической коррозии металлов академика Фрумкина, теоретически обосновавшего установление коррозионных (стационарных) потенциалов и механизм гомо-генно-электрохимического растворения металлов [3, 4] и особенно члена-корреспондента АН СССР Акимова [5, 6], заложившего основы структурной коррозии металлов, исследовавшего ряд важнейших теоретических и практических вопросов коррозии и создавшего советскую школу коррозиоии-стов.  [c.10]


Важные для практики работы в России (до первой мировой войны) выполнили С. П. Власов (1820 г.) по разработке стойких красок, Б. С. Якоби (1856 г.) по электрохимической защите стали цинковым протектором, А. И. Онуфрович (1910 г.) по разработке наиболее устойчивого кровельного железа, Е. Куклин (1910 г.) но травлению металлов. Исследования акад. В. А. Кистя-ковского, начатые в 1890 г. и продолженные им после Великой Октябрьской социалистической революции, послужили основанием для созданной им фильмовой теории коррозии металлов. В процессах электрохимической коррозии и пассивности решающее значение приобретают свойства образующихся на поверхности металла окисных пленок (фильмов). В. А. Кистяковский открыл мото-химические и мото-электрические явления, в основе которых лежит изменение электрохимических потенциалов металлов при их движении в растворах электролитов.  [c.10]

Общие вопросы теории коррозии в монографии не излагаются, так как авторы исходили из предположения, что читателям известны теоретические основы коррозионных процессов и явлений, которые к тому же достаточно полно и популярно рассматриваются в ряде доступных пособий (см. например, Н. Д. Т о м а ш- е в. Теория коррозии металлов, Металлургиздат, 1952 С. А, Б а л е з и н. Коррозия металлов и борьба с ней, изд. Знание , 1952 Отчего и как разрушаются металлы, Учпедгиз, 1956).  [c.6]

Однако оформление исследований о коррозии металлов в самостоятельную научную дисциплину необходимо отнести к началу настоящего столетия и, особенно, к советскому периоду развития науки, когда рядом блестящих работ были установлены основные закономерности электрохимического механизма протекания коррозии. Здесь особо следует отметить работы акад. В. А. Кистяковского [3, 4], давшего фильмовую теорию коррозии Н. А. Изгарышева [5—9], изучившего ряд важных вопросов электрохимической коррозии металлов А. Н. Фрумки-на [19. 20], теоретически обосновавшего новое направление электрохимического механизма растворения металлов, и особенно Г. В. Акимова [10—16], заложившего основы структурной коррозии металлов, исследовавшего ряд важнейших теоретических и практических вопросов коррозии и создавшего советскую школу коррозионистов.  [c.11]

На основе физической теории надежности создаются методы расчета надежности нефтехимических аппаратов, методы ускоренных испытаний, устанавливаются режимы защиты и упрочнения поверхностей аппаратов. Интеграция теории надежности с вышеназванными физико-техническими дисциплинами привела к появлению таких направлений в теории надежности, как прочностная надежность, трибологическая, коррозионная надежность. В этих направлениях решаются задачи расчета, испытаний и обеспечения надежности на основе методов теории прочности, фибологии и коррозии металлов, а также в условиях воздействия на изделия соответственно механических нагрузок, агрессивных сред, трения и изнашивания.  [c.71]

Возможность практического использования полученного соотношения для определения деформационного изменения тока коррозии обосновывается так же, как и в известном методе снятия реальных поляризационных кривых для определения скорости коррозии металла на основе кинетической теории коррозии идеальные поляризационные кривые, определяющие стационарный потенциал и ток коррозии, рассматриваются как продолжение тафелевских участков реальных поляризационных кривых. Это, очевидно, справедливо для электрохимически гомогенной поверхности, но также может быть принято для технических металлов (железа, никеля, свинца и др.), поскольку наблюдалось удовлетворительное совпадение результатов, полученных измерением скорости коррозии непосредственно по убыли массы и расчетом по поляризационным кривым [54]. На рис. 59 реальные поляризационные кривые показаны сплошными линиями. Для практического расчета скорости коррозии в формулу (232) следует подставлять величины сдвигов потенциалов, определенные сечением реальных анодных и катодных поляризационных кривых для произвольно выбранного значения плотности тока гальваностати-ческой поляризации в пределах тафелевских участков.  [c.166]

Таким образом, на основе теории коррозионных процессов можно правильно выбрать материалы и способы защиты для данных условий, метод ускоренных испытаний и способ оценки скорости коррозии металлов и сплавов. Ознакомление с основными методами коррозионных испытаний металлов поможет специалистам, занимающимся защитой от коррозии с помощью лакокрасочных покрытий, более точно оценить свойства металлов, которые должны быть защищены от воздействия кбррозионно-активных сред.  [c.33]

Это обстоятельство позволяет полагать, что положительное влияние никеля и других легирующих веществ с малым перенапряжением водорода на повышение коррозионной стойкости конструкционных материалов может быть вполне объяснено на основе теории эффективных катодных присадок, разработанной Н. Д. Тома-шовым [111,202]. Поданным К. Видема [111,157] смещение потенциала алюминия от стационарного значения в положительную сторону вызывает увеличение скорости коррозии металла. Это говорит о том, что при температуре 200° С в отличие от комнатных температур, стационарный потенциал алюминия соответствует активной области. При введении в.алюминий легирующих компонентов с малым перенапряжением реакции разряда ионов водорода и ионизации кислорода, скорость катодного процесса увеличивается, что приводит к смещению стационарного потенциала металла в положительную сторону. При этом достигаются значения потенциала, соответствующие области пассивации, а скорость коррозии алюминия значительно снижается. Аналогичного эффекта можно добиться, поляризуя металл анодно. Действительно, анодная поляризация улучшает коррозионную стойкость алюминия в дистиллированной воде при температуре 325° С, а катодная поляризация в этом случае увеличивает скорость коррозии [111,193]. На основании изложенного можно полагать, что те легирующие компоненты с введением которых скорость коррозии алюминия при низких температурах (медь, никель, железо и др.) увеличивалась, при высоких температурах должны способствовать увеличению коррозионной стойкости металла. Приведенные рассуждения подкрепляются следующими экспериментальными данными. Ж- Е. ДрейлииВ. Е. Разер [111,193] измеряли стационарный потенциал алюминиевых сплавов в дистиллированной воде при температуре 200° С. Электродом сравнения служил образец из нержавеющей стали. Стационарный потенциал алюминиевого сплава с концентрацией 5,7% никеля оказался на 0,16 б положительнее, чем стационарный потенциал алюминиевого сплава 1100. При катодной поляризации с плотностью тока Ъмш1см-потенциал сплава 11(Ю смещался в отрицательную сторону на 1,2б, в то время как смещение потенциала сплавов, легированных 11,7% кремния, составляло 0,34 б, а сплавов, легированных 5,7% никеля, 0,12 б, что является косвенным показателем того, что на двух последних сплавах скорость катодного процесса больше, чем на алюминиевом сплаве 1100. С точки зрения теории эффективных катодных присадок, легирование платиной и медью должно оказывать положительное действие на коррозионную стойкость алюминия. В самом деле, с введением в алюминий 2% платины или меди коррозионная стойкость последнего в дистиллированной воде при 315° С значительно увеличивается [111, 193]. С этих же позиций легирование свинцом, оловом, висмутом и кадмием не должно улучшать коррозионной стойкости алюминия, что и подтверждается экспериментальной проверкой [111,193]. Как установлено К. М. Карлсеном [111,173],  [c.198]


Борьбой с коррозией человечество вынуждено было заниматься ещё в древности, на заре своего развития одновременно с наступлением железного века . Ещё в пятом веке до н.э. древние феки для защиты железа от коррозии покрывали его оловом, полировали, оксидировали. Основы учения о коррозии металлов возникли на стыке двух наук - материаловедения и физической химии. Первым научным подходом в области коррозии принято считать работы великого русского учёного - естествоиспытателя М.В.Ломоносова, который в своей диссертации в середине 18 столетия открыл закон сохранения массы реагирующих веществ и обнаружил явление пассивности" у стали. В 1748 году М.В.Ломоносов высказал мысль и впоследствии (1756 г.) подтвердил её на практике, что при нагревании металлы соединяются с воздухом, образуя окалину (см. п. 1.1). В 1773 году эта первая научная теория окисления металлов бьша дополнена французским химиком А.Л.Лазуазье, доказавшим, что металлы при окисленрги соединяются с наиболее химически активной частью воздуха -кислородом. Основоположником учения электрохимической коррозии принято считать швейцарского физикохимика А.-А. Де ля Рива, который в начале прошлого столетия (1830 г.) открыл теорию коррозии микрогальванических элементов, хотя ещё в 1750 году М.В. Ломоносов высказал мысль, что металлы в кислых спиртах растворяются иначе, чем соли в воде . Большой вклад в развитие электрохимической коррозии внес английский физик, почетный член Петербургской Академии наук М. Фарадей. Руководимый идеей о единстве сил природы, он эмпирически в 1833... 1834 годах открыл законы  [c.6]

Проанализируем сначала простейший случай кислотной коррозии, полагая, что растворяющийся сплав состоит из сильно различающйхся по своим Свойствам фаз, представленных практически чистыми компонентами-А и В. Весь процесс приближенно можно описать на основе теории коррозионных микроэлементов, допу стив, что реакция анодного растворения локализована на фазе А (фаза с отрицательным потенциалом), а катодная реакция — восстановление Н+-ИОНОВ — срсредоточена на фазе В (фаза с положительным потенциалом). В стационарных условиях скорости обеих реакций одинаковы и равны скорости саморастворения металла. В реальных процессах помимо работы фазовых элементов существует еще целый ряд причин, вызывающих коррозионные разрушения, в частности коррозионные элементы типа граница фазы — центр фазы, которые сильно усложняют анализ. По границам фаз всегда происходит накопление дислокаций и примесных атомов, что способствует сосредоточению в этих зонах интенсивного растворения.  [c.155]

Возможны и более сложные случаи контактной коррозии — коррозии полиметаллических конструкций, включающих несколько металлов и сплавов с различными потенциалами. Коррозионное поведение таких систем можно рассчитать на основе теории многоэлектродных коррозионных элементов, разработанной Г. В. Акимовым и Н. Д. Томашо-вым [6, 7].  [c.77]


Смотреть страницы где упоминается термин Основы теории коррозии металлов : [c.4]    [c.305]    [c.168]    [c.5]    [c.46]    [c.213]   
Смотреть главы в:

Технология металлов и других конструкционных материалов Изд8  -> Основы теории коррозии металлов



ПОИСК



Коррозия металлов

Коррозия основы теории

Основы теории

Теория коррозии

Теория металлов



© 2025 Mash-xxl.info Реклама на сайте