Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и применение индия

СВОЙСТВА и ПРИМЕНЕНИЕ ИНДИЯ  [c.409]

СПЛАВЫ СВИНЕЦ-ИНДИЙ Структура, свойства и применение  [c.144]

Металлический индий широко применяется в технике как ценный легирующий материал. Важнейшей областью применения индия является производство подшипников для двигателей [1— 3]. Известно [4], что индий способен диффундировать в другие металлы при относительно низкой температуре. При этом на поверхности основного металла образуются твердые, износостойкие покрытия, обладающие защитными и декоративными свойствами. Индиевые покрытия в подшипниках предотвращают эрозию маслом и придают поверхности хорошие смазывающие свойства. Поэтому свинцовую поверхность серебряных вкладышей авиационных подшипников для защиты от коррозии органическими кислотами смазочных масел предложено покрывать тонким слоем электролитического индия. При термической обработке такое покрытие диффундирует в свинец, придавая поверхности вкладыша высокие механические свойства [2].  [c.10]


Стандартный потенциал таллия по отношению к его одновалентным ионам равен —0,336 В, к трехвалентным +0,71 В. Таллий обладает хорошими антифрикционными свойствами и в сплавах со свинцом, индием, оловом и другими металлами может применяться как эффективное антифрикционное покрытие. При сверхнизких температурах (—271 °С) таллий является сверхпроводником. Применение таллия в технике ограничивается его токсичностью.  [c.307]

Поглотители нейтронов в реакторе. Ниже приведены ядерные свойства некоторых элементов, имеющих большую величину сечения ядерных реакций и поэтому использующихся в реакторе как поглотители нейтронов. Элемент или изотоп — В, °В, Li, d, In, Eu, Gd, Sm, Ag соответственно их сечение захвата тепловых нейтронов, барн — 759, 3840, 950, 2450, 194, 4300, 46 000, 5800, 63. Из приведенных элементов наибольшее практическое применение находят бор, серебро, индий, кадмий, европий и гадолиний.  [c.125]

В качестве теплоносителей используют металлический литий, натрий, калий, ртуть, олово, сплавы натрия с калием и свинца с оловом или висмутом, имеющие низкие температуры плавления и другие важные физические свойства. Могут найти применение рубидий, цезий, галлий и индий. Особый интерес для ядерной техники представляют щелочные металлы (литий, натрий, калий и сплавы натрия с калием).  [c.5]

Легкоплавкими припоями бериллий паяют с применением специальных флюсов, содержащих фториды и хлориды цинка, аммония или щелочноземельных металлов. Нагрев подпайку осуществляют быстро, поскольку применяемые флюсы быстро теряют свои свойства. Перед пайкой поверхности желательно лудить. Лужение и пайку производят оловянно-свинцовыми припоями, содержащими цинк, индий или серебро. Пайку бериллия можно осуществить цинковыми или кадмиевыми припоями, которые хорошо растекаются по поверхности бериллия и затекают в зазор. Для улучшения смачивания легкоплавкими припоями с использованием флюса Л К-2 бериллий покрывают гальваническим никелем.  [c.263]

Технология получения редких и рассеянных элементов имеет ряд особенностей, связанных с необходимостью переработки бедного рудного сырья сложного состава. Многие из перечисленных элементов не имеют собственных месторождений и извлекаются из отходов и промежуточных продуктов сернокислотного производства, алюминиевой промышленности, производства цинка, кобальта, никеля, меди и т. д. Указанные сырьевые источники отличаются сложностью химического состава, физическим состоянием и низким содержанием извлекаемого элемента. Это обусловливает разнообразие технологических способов и схем выделения элементов и получения их в химически чистом виде. В большинстве случаев применяют типичные гидрометаллургические методы с получением на первой стадии разбавленных по ценному компоненту растворов с последующим концентрированием его и отделением от примесей. Развитие и совершенствование технологии производства редких и рассеянных элементов не может быть осуществлено без применения метода ионного обмена. Применение ионообменных смол и избирательных неорганических ионообменных материалов дает возможность не только выделить и сконцентрировать тот или иной редкий или рассеянный элемент, очистить его от примесей, но и решить задачи по разделению близких по свойствам элементов лития и натрия, рубидия и цезия, галлия, индия и таллия, селена и теллура, по получению соединений элементов и металлов высокой степени чистоты.  [c.114]


Сплавы меди с другими металлами — марганцем, висмутом, сурьмой, индием и тройные сплавы Си——5п и Си—2п—N1 получают преимущественно в лабораторных условиях и в промышленности почти не используют. По имеющимся кратким литературным сведениям эти сплавы по декоративному виду, стойкости против коррозии и некоторым специальным свойствам в дальнейшем смогут найти практическое применение.  [c.81]

Согласно литературным данным [5, 6], сурьма также достаточно стойка в различных агрессивных средах. Однако из-за высокой хрупкости применение сурьмяных покрытий ограничено. Высокая стоимость индия и его пониженная твердость лимитируют применение индиевых покрытий. Поэтому представляется весьма перспективным сочетание ценных качеств обоих металлов— сурьмы индия — в сплаве. Такие сплавы осаждают электрохимическим путем с целью получения полупроводниковых слоев [7—И]. Однако, согласно литературным данным о коррозионных и электрохимических свойствах индий-сурьмяных сплавов [12—13], последние могут найти широкое применение как антикоррозионные покрытия.  [c.10]

Из полупроводниковых материалов наиболее полно изучены и широко применяют германий и кремний. В твердом кристаллическом состоянии они имеют структуру типа алмаза. Эти материалы обладают многими ценными свойствами. Для нужд полупроводниковой техники мировая потребность в них составляет сотни тонн в год. Наряду с германием и кремнием в последнее время все большее применение получают искусственно созданные полупроводники следующих композиций мышьяк — галлий (арсенид галия), индий — сурьма, кадмий — висмут и др.  [c.176]

Шеллак получается из гуммилака, который образуется в результате жизнедеятельности насекомых, перерабатывающих сок лакового дерева, произрастающего в Индии и прилегающих к ней островах. Гуммилак, выпускают в продажу в виде зерен или палочек. Гуммилак применяется в производстве спиртовых лаков, но в основном он перерабатывается на шеллак. Переработка заключается в том, что гуммилак кипятят в горячей воде. При этом вещество, окрашивающее гуммилак, отмывается. Смола отливает-ся в виде тонких пластинок желтого цвета. Температура плавления шеллака 110—115°. Шеллак применяется для приготовления спиртовых лаков и политур, сургучей и граммофонных пластинок. Пленки шеллачных лаков отличаются хорошей механической прочностью, водостойкостью и способностью полироваться до высокого глянца. Шеллак обладает электроизоляционными свойствами, вследствие чего нашел большое применение в изготовлении изоляционных лаков.  [c.18]

Нелегированный алюминий не имеет свойств, необходимых для подшипникового материала, так как обладает небольшой механической прочностью и легко заедает. Добавлением других металлов (олово, кадмий, свинец, висмут, индий и др.) он приобретает свойства, позво-ляюш ие использование полученных таким образом сплавов в качестве подшипниковых материалов. В таких сплавах различаем мягкую пластичную массу из алюминия, в которой находятся твердые кристаллы, образованные из остальных металлов, несуш их нагрузки, которые совсем не растворяются в чистом алюминии и не способствуют затвердеванию мягкой массы образованием смеси кристаллов. Всестороннее исследование алюминиевых сплавов как подшипниковых материалов еще не завершено полностью, и полученные результаты нельзя считать полными или окончательными, все же вкладыши из этих сплавов в некоторых случаях нашли уже широкое применение.  [c.301]

Индий. Этот металл обладает ценными физико-механическими свойствами, что обусловило разнообразное его применение во многих областях науки и техники. Электролитические покрытия индия благодаря хорошей пластичности легко поддаются различным способам обработки.  [c.234]

Для скрайбирования кремния, обладающего высокой поглощательной способностью на полосе 1 мкм, применяются ИАГ-лазеры свободной генерации или с модуляцией добротности. Для прецизионной резки полупроводниковых материалов может использоваться установка на базе импульсного лазера на азоте. В отлитие от полупроводников, обработанных излучением твердотельных лазеров, работающих в режиме свободной генерации, монокристаллы сурьмянистого индия, арсенида галлия и германия, подвергнутые воздействию излучения азотного лазера, не изменяют структуру вблизи зоны реза. Указанное обстоятельство является весьма важным, так как даже незначительное изменение структуры поверхности полупроводника может сильно изменить его электрофизические свойства. Этот метод был применен для разделения плоского /7-л-перехода на ряд элементов различной конфигурации.  [c.317]


Полупроводники в качестве активного вещества. На возможность использования полупроводниковых материалов в оптических квантовых генераторах было указано Н. Г. Басовым и его сотрудниками еще в 1959 г. Причем уже тогда отмечалось, что применение полупроводников позволит непосредственно преобразовать энергию электрического тока в энергию когерентного излучения. Это свойство полупроводников объясняется тем, что они позволяют создавать высокую концентрацию активных частиц. При этом процесс преобразования потока электронов в поток фотонов отличается высоким коэффициентом полезного действия, достигающим 80—100%, в то время как у кристаллических и стеклянных активных веществ он составляет всего 1—3%. В качестве материала в полупроводниковых оптических генераторах используются мышьяковистый галий и индий, сурьмянистый индий и др. (табл. 2.3). Из этих материалов изготовляют полупроводниковый диод в форме куба размерами не более одного квадратного миллиметра. Две противоположные грани куба делают строго параллельными и полируют для того, чтобы их поверхности образовали зеркальный резонатор.  [c.30]

Применение индия определила его высокая стойкость против коррозии в среде минеральных масел и продуктов их окисления, низкий коэффициент трения и устойчивость к атмосферным воздействиям. Индиевые покрытия используются для повышения отражательной способности рефлекторов, в качестве антифрикционных покрытий и для зашиты от коррозии в специальных средах. К сожалению, индий обладает малой твердостью и узкой областью рабочих температур, в связи с этим широкое распространение получили сплавы индия, улучшающие эти свойства. Так, электролитический сплав индия со свинцом хорошо зарекомендовал себя в условиях трения без смазки. Сплав индия с таллием характеризуется сверхпроводимостью при низких температурах, сплавы нидий-кадмий, индий-цинк во много раз лучше сопротивляются коррозии, чем чистые кадмиевые или цинковые покрытия. Хорошими антифрикционными свойствами обладают и другие индиевые сплавы индий — никель, индий — кобальт, индий — серебро. Ценными свойствами обладает сплав индий — палладий. Индиевые покрытия можно получить из различных электролитов цианистых, сернокислых, сульфаматных, тартратных, борфтористоводородных. Составы наиболее употребляемых электролитов приведены в табл. 33.  [c.79]

Меры, предупреждающие или замедляющие коррозию 1) эксплоатация подшипников при сравнительно низких температурах и правильном режиме вентиляции 2) улучшение качества масла, выбор сорта масла с учётом специфических свойств антифрикционного сплава и применение подходящих ингибиторов (замедлителей) коррозии, вводимых в масло 3) покрьпие рабочей поверхности подшипника металлом, например, индием, или сплавом, способным защитить её от коррозийной агрессии 4) применение антифрикционных сплавов с присадками, повышающими коррозийную стойкость.  [c.635]

В проводившихся ранее работах по изучению свойств и областей применении индия встречались затруднения из-за редкости металла. В 1924 г. оо всем мире бьию получено всего 1 г металлического иидия. Однако в настоящее время запасы индия превышают его потребление, причем в случае дополнительного увеличения спроса его производство может быть расширено.  [c.218]

У. Мэррей и фирма Индиум корпорейшн nj) Америка принимали участие в создании индиевой промыш.ленности США. Под руководством Мэррея, который начал свои работы с индием за десять лег до создания фирмы в 1934 г., эта фирма занималась изучением свойств и промышленного применения индия.  [c.218]

В отношении многих металлов часто применяют термин редкие (в смысле малоприменяемые). Однако редкость их может вызываться целым рядом причин малой распространенностью в земной коре рассеянностью их присутствия в рудах и минералах при значительном в целом содержании в земле трудностью их выделения из руды или отделения от других металлов еще недостаточной изученностью свойств, ограничивающей применение. К числу таких редких металлов принадлежат литий, рубидий, цезий, бериллий, галлий, индий, таллий, германий. Из элементов побочных подгрупп к редким принадлежат скандий, иттрий, лантан, актиний, цирконий, гафний, ванадий, ниобий, рений. К числу редких, а точнее рассеянных, принадлежат и лантаноиды (церий и др.), на что указывает их старинное название редкоземельные элементы ( земля — старинное название оксидов).  [c.75]

Основными свойствами индия, которые определили его применение в гальванотехнике, являются низкий коэффициент трения, высокая стойкость в среде минеральных масел и продуктов их окисления, в атмосферных условиях. К недостаткам его относят низкие твердость и температуру плавления (156,4 °С). Покрытия индием используют в качестве антифрикционного слоя в под-щипниках качения и скольжения, в особенности при смазке минеральными маслами, для повышения отражательной способности рефлекторов, защиты от коррозии в некоторых специальных средах, при изготовлении полупроводников. Значительное применение для тех же целей находят сплавы на основе индия с добавками цинка, кадмия, свинца, никеля, серебра, которые обладают хорошими эксплуатационными свойствами и позволяют уменьшить расход редкого металла.  [c.131]

Палладиевые покрытия находят все большее применение благодаря своей относительно невысокой стоимости и тому, что палладий менее дефицитен из всех остальных платиновых металлов. За последние годы возросло применение палладия для покрытий электрических контактов в радиотехнйчёской аппаратуре, в аппаратуре связи палладием покрывают контакты.переилючрт лей, штепсельных разъемов печатных плат. Применяя палладий, надо,помнить, что он обладает большой каталитической активностью и появляющаяся пленка на поверхности слаботочных контактов может привести к заметному повышению переходного сопротивления, поэтому необходимо очень осторожно подходить к применению палладиевых покрытий в герметизированных системах. Необходимо также учитывать, что палладий легко адсорбирует водород, а это оказывает неблагоприятное действие на прочность сцепления покрытия с основой. Если же контакты. покры,тые палладием, работают при большой силе тока, то образовавшиеся на поверхности детали, пленки не оказывают влияния на электрические характеристики.. Широкому распространению палладия способствуют также новые разработанные технологические процессы получения достаточно толстых покрытий. Палладированный титан в нейтральных и щелочных средах может использоваться в качестве нерастворимых анодов. Толщина палладиевых осадков в зависимости от назначения может изменяться от 3—5 мкм до 20—50 мкм (для контактов и при защите от коррозии). На основе палладия могут быть получены многие сплавы, которые в ряде случаев могут заменять палладиевые покрытия. Такие сплавы, как палладий — никель, палладий— кобальт, палладий — индий, палладий — медь, палладий — олово с успехом могут применяться для покрытия электрических контактов. Свойства палладия во многом зависят от условий получения и состава электролита, из которого он получен.  [c.55]


Смазочные материалы. Добавление индия в смазочные материалы в виде твердь1Х соединений или тонкой суспензии обеспечивает широкие возможности развития этой области применения. Металл обладает такими свойствами, как пластичность и ковкость, которые весьма ценны для этого применения 110]. Сообщается [56], что некоторые индиевые мыла, добавленные к моторному топливу, препятствуют образованию осадка углерода и увеличивают Коэффициент полезного действия.  [c.241]

Применение циркония в металлургии обусловлено тем, что он является одним из энергичнейших раскислителей стали. Кроме того, связывая в прочные соединения азот и серу, цирконий, нейтрализует их вредное влияние на сталь. В сочетании с другими легирующими присадками цирконий повышает вязкость, прочность, износостойкость и свариваемость стали. Присаживают цирконий в сталь в виде сплавов, состав которых приведен в табл. 103. Цирконий является довольно распространенным элементом, содержание которого в земной коре составляет 0,02 %. Свойства наиболее важных минералов циркония приведены в табл. 104. Различают два основных типа месторождений циркония коренные и россыпи. Важнейшее значение имеют современные и древние прибрежно-морские россыпи, которые обычно представляют собой комплексные руды циркония и титана, реже содержащие также торий, уран и другие ценные элементы. Наиболее крупные месторождения циркония находятся в США, Индии, Бразилии и Австралии. Запасы циркониевых руд в СССР обеспечивают потребность отечественной промышленности в цирконии и его сплавах. Циркониевый концентрат поставляется по ОСТ 48-82—74 (табл. 105). Кроме того, циркониевый концентрат может содержать торий и уран, суммарно в эквиваленте не более 0,1 % тория. Это необходимо учитывать прн работе с циркониевым концеи-  [c.316]

Наполнителем галлиевых паст — припоев служат тонкодисперсные порошки, главным образом меди, серебра, никеля. Для улучшения свойств легкоплавкой составляюш,ей паст в галлий добавляют индий, олово (табл. 8 и 9). Дисперсность наполнителя галливевых паст обычно составляет35—71 мкм. Припой марки № 3 (по данным Б. Ф. Чугунова и др.) применен для пайки деталей электровакуумных приборов, работаюш,их до температуры 850— 1040° С без нарушения вакуумной плотности.  [c.76]

Индиевый припой со свинцом (50% In—50% РЬ) по своим технологическим свойствам близок к припоям Sn—РЬ, но в отличие от них слабо растворяет золото и не охрупчивает его. Соеди-. нение из золота, выполненное этим припоем, обладает в 100 раз более высокой термостойкостью в интервале температур —50-г--г—fl55° , чем соединения, паянные припоем, содержащим 63% Sn —37% РЬ, хотя сопротивление срезу нахлесточных соединений ниже при применении припоя с индием. Соединения, выполненные припоем 50% In—50% РЬ, рекомендуют использовать в издедиях, работающих до температуры 125° С [441.  [c.80]

Хотя в технике в наше время в гораздо больших масштабах используются сплавы металлов, однако и непосредственное применение чистых металлов неуклонно продолжает возрастать. В последние два-три десятилетия особенно увеличился ассортимент Н01вых технически важных металлов. Не так давно на такие металлы, как кобальт, молибден, ниобий, вольфрам, титан, цирконий, тантал, индий, германий и ряд других, можно было смотреть как на сравнительно редкие, не имеющие широкого практического применения. Сейчас все эти металлы имеют уже большое значение в технике и интерес к их свойстам, в том числе и Koippo-зионным, все время возрастает. Для правильного понимания коррозионных свойств металлических сплавов необходимо знать коррозионные свойства чистых компонентов. Поэтому далее мы дадим общую коррозионную характеристику наиболее важных для техники чистых металлов. Коррозионные свойства сплавов будут рассмотрены позже.  [c.430]


Смотреть страницы где упоминается термин Свойства и применение индия : [c.400]    [c.461]    [c.299]    [c.376]    [c.2]    [c.179]    [c.314]    [c.124]   
Смотреть главы в:

Металлы и их заменители  -> Свойства и применение индия



ПОИСК



Индан

Индий

Индий Свойства

Применение индиевые — Диаграмма состояния сплавов системы индий—кадмий 93 Применение 93 — Свойства 93, 94 — Химический состав

Свойства индия



© 2025 Mash-xxl.info Реклама на сайте