Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и применение бериллия

СВОЙСТВА И ПРИМЕНЕНИЕ БЕРИЛЛИЯ  [c.391]

Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]


Указывается [2], [4] на возможность применения бериллия в качестве отражателя п замедлителя в атомных реакторах в силу малого атомного веса, малого эффективного сечения захвата тепловых нейтронов и высокого эффективного сечения рассеяния. В силу этих же свойств он пригоден для плакировки . стержней ядерного горючего.  [c.519]

Свойства изделий из спеченного ВеО- Полученные из порошкового оксида бериллия изделия обладают весьма ценными свойствами. В спеченном оксиде бериллия удается реализовать специфические природные физические свойства этого оксида и получить материал с исключительно высокой теплопроводностью, большой механической прочностью, отличной термостойкостью. Оксид бериллия имеет исключительную способность рассеивать радиоактивное излучение высоких энергий, что послужило причиной применения этого материала в ядерной энергетике в качестве различных элементов тепловых реакторов. Технические свойства изделий из оксида бериллия могут существенно зависеть от технологических методов производства. Некоторые свойства определяются главным образом плотностью обожженных изделий. Чем больше плотность, чем больше она приближается к теоретической, тем выше могут быть показатели этих свойств. В зависимости от методов оформления изделий и температуры окончательного обжига плотность спеченного оксида бериллия может составлять 0,9—0,99 тео- ретической. Твердость хорошо спеченного ВеО по шкале Мооса 9, микротвердость 15,2 ГПа. Механические свойства спеченного оксида бериллия как в холодном, так и в нагретом состоянии зависят главным образом от плотности, характера кристаллизации и наличия - примесей, образующих инородную фазу. Известное влияние оказывает также метод изготовления изделий. Предел проч ности при сжатии при нормальной температуре (по определению большинства исследователей) образцов плотностью 2,9 г/см составляет около 1500 МПа.  [c.132]

Сочетание таких технически важных свойств, как малая плотность, высокие удельная прочность и жесткость, сохраняющиеся до температур 500-600 °С, высокая теплоемкость и теплопроводность, обусловило преимущественное применение бериллия и его сплавов в авиационной и ракетно-космической технике.  [c.640]

Высокая стоимость и токсичность бериллия пока еще сдерживает его широкое применение. Однако его уникальные свойства несомненно будут способствовать увеличению спроса на этот элемент. Рост потребления приведет к технологическим усовершенствованиям, которые будут способствовать уменьшению издержек производства и снижению цены на бериллий. Бериллий является перспективным материалом ближайшего будущего.  [c.641]


Бериллий обладает большой теплотой плавления и очень высокой теплотой испарения. По удельной теплоемкости он в 2,5 раза превосходит алюминий, в 4 раза — титан и в 8 раз — сталь, по теплопроводности стоит за алюминием, уступая ему в теплопроводности только 12 %. Все эти свойства способствуют успешному применению бериллия в качестве теплозащитного материала в ракетной и особенно космической технике (головные части ракет, передние кромки крыльев сверхзвуковых самолетов, оболочки кабин космонавтов).  [c.430]

Магний. Самым легким металлом, используемым в промышленности, является магний. Его плотность 1,74 г/см , температура плавления 651 °С, в литом состоянии 0в = 100 Ч- 120 МПа, O — 3,6%. Получают магний из магнезита, содержащего 28,8% магния, и из доломита, содержащего 21,7% магния, а также из других магниевых руд. Металлический магний получают в основном путем электролиза магния из расплавленных солей. При этом образуется черновой магний, содержащий 5% примесей. После рафинирования путем переплавки в электропечи образуется чистый магний, содержащий 99,82— 99,92% магния. Устойчивость магния против коррозии невысокая, поэтому применение его в технике очень ограничено. В промышленности магний используется в виде сплавов с алюминием, марганцем, цинком и другими металлами. Магниевые сплавы хорошо обрабатываются резанием и имеют сравнительно высокую прочность (Ств = 200- 400 МПа)..В сплавы магния вводят церий, цирконий, которые измельчают зерно и повышают механические свойства, а также бериллий, торий и другие редкоземельные металлы. Различают литейные и деформируемые сплавы магния.  [c.103]

Преимущества магниевых сплавов перед алюминиевыми следующие 1) удельный вес в 1,5 раза меньше 2) отличная механическая обрабатываемость, допускающая весьма высокие скорости резания. К недостаткам следует отнести 1) худшие литейные свойства 2) необходимость плавки под защитными флюсами и введения специальных добавок в формовочную землю и 3) меньшее сопротивление коррозии. Эти недостатки могут быть преодолены применением соответствующих технических мероприятий (рациональная конструкция литниковых систем и самих отливок, небольшие добавки бериллия, нанесение защитных оксидных покрытий и т. п.). Недостатком сплавов следует также считать низкие упругие свойства и модуль упругости.  [c.314]

Укажем такл<е на некоторые свойства окисей магния и бериллия, которые весьма ограничивают область их применения. Это в первую очередь ядовитость окиси бериллия, поэтому в обращении с окисью бериллия необходимо принимать меры предосторожности против попадания в организм пыли и паров при дыхании. Использование окиси магния ограничивают ее высокая летучесть и большая растворимость в воде.  [c.77]

Даны основы металлургии магния, бериллия, лития и щелочноземельных металлов (кальция, стронция, бария). Освещены важнейшие свойства этих металлов и области их применения. Рассмотрены вопросы экономичности технологий, утилизации отходов, а также охраны труда.  [c.20]

Керамику из окиси алюминия применяют для изготовления металлорежущих резцов, фильер для протяжки главным образом искусственных волокон. Исследуется возможность использования ее в качестве трущихся деталей. Окисная керамика находит применение в качестве жаростойкого, химически стойкого покрытия в ракетной и реактивной технике. В атомном реакторостроении широко используется окись бериллия благодаря благоприятным ядерным свойствам.  [c.492]

Конструкционные материалы должны обладать хорошей совместимостью — свойством существовать в контакте без химических или других взаимодействий друг с другом. Это особенно важно при применении металлических теплоносителей. К таким устойчивым металлам при жидких металлических теплоносителях относятся ниобий, тантал, титан, ванадий, цирконий и бериллий.  [c.189]

Достижения в области физики обусловили начало разработки магнитно-импульсной обработки материалов, штамповки взрывом, электроннолучевых методов обработки. Некоторые из теорий поведения материи в микромире начинают получать свое реальное применение при создании новых материалов и обеспечении их высоких свойств. Это использование новых видов материалов, ранее почти не применяемых, как например, титан и другие, изменение свойств ранее известных материалов путем присадок тугоплавких элементов (бериллий, церий, торий и др.). Современные достижения в области физики позволяют развить физическое металловедение, что способствует обеспечению повышенных эксплуатационных свойств машин, а в связи с этим и применяемых для них материалов.  [c.6]


Легкоплавкими припоями бериллий паяют с применением специальных флюсов, содержащих фториды и хлориды цинка, аммония или щелочноземельных металлов. Нагрев подпайку осуществляют быстро, поскольку применяемые флюсы быстро теряют свои свойства. Перед пайкой поверхности желательно лудить. Лужение и пайку производят оловянно-свинцовыми припоями, содержащими цинк, индий или серебро. Пайку бериллия можно осуществить цинковыми или кадмиевыми припоями, которые хорошо растекаются по поверхности бериллия и затекают в зазор. Для улучшения смачивания легкоплавкими припоями с использованием флюса Л К-2 бериллий покрывают гальваническим никелем.  [c.263]

Из табл. 5 видно, что такие выдающиеся свойства окиси бериллия, как высокая температура плавления, высокое электрическое сопротивление и хорошая теплопроводность в кристаллическом состоянии, позволяют использовать ее в качестве тугоплавкого материала. Кроме того, устойчивость и химическая инертность при высоких температурах делают окись бериллия выдающимся тугоплавким материалом в ряде случаев, где ее применение часто является единственным решением некоторых задач, связанных с работой при высоких температурах.  [c.58]

Радиационная устойчивость. Оксид бериллия в большей степени, чем какой-либо керамический материал, обладает способностью рассеивать нейтроны. Именно эта способность и определила применение оксида бериллия в атомных реакторах в качестве замедлителей нейтронов. Под воздействием радиоактивного излучения вследствие смещения ионов и возникновения дефектов в кристаллической решетке происходит изменение некоторых физических и теплофизических свойств ВеО. В результате облучения меняется гексагональная решетка, причем отношение осей с/а увеличивается с 1,622 до облучения до 1,627 после облучения, при этом наблюдается удлинение образца на 0,1—0,2%. Наиболее заметно снижаются у облученного ВеО теплопроводность (на 30—50%) и прочность (до 80% первоначальной). После термической обработки первоначальные свойства спеченного ВеО почти полностью восстанавливаются.  [c.136]

Области применения изделий. Основные области применения керамики из ВеО — ядерная энергетика и электроника. Спеченный оксид бериллия используют в качестве конструкционных элементов в обычных и высокотемпературных ядерных реакторах, в частности как замедлителя и отражателя. Оксид бериллия — хороший матричный материал для ядерного горючего. Тигли из ВеО благодаря его химической инертности находят применение в металлургии редких металлов для плавки металлических бериллия, платины, тория, титана, урана и др., при этом допускается нагрев в вакуумных индукционных печах. Хорошие диэлектрические свойства ВеО и- вакуумная плотность определили его применение в электронной технике.  [c.137]

Подробно о свойствах и применении окнси бериллия см. в книге Р. А. Беляева Окись бериллия. Свойства и применение (Атомиздат. 1962).— Прим. ред.  [c.58]

Беляев Р. А. Окись бериллия, свойства и применение, Атомлз-дат, 1962.  [c.567]

Из данных табл. 1 следует, что при 1500° С лучшими электроизоляционными свойствами обладают окислы бериллия и алюминия. Ввиду значительной токсичности бериллия приходится отдавать предпочтение окиси алюминия. При температуре 2000° С хорошими электроизоляционными свойствами обладают окись бериллия, окись магния и тория. Значительная летучесть окрюи магния при повышенных температурах ограничивает возможность его применения. Высокие электроизоляционные свойства и стабильность А12О3 при повышенных температурах (вплоть до 1850° С) указывают на перспективность применения этого материала в качестве электроизоляционного.  [c.215]

Отличительной особенностью бериллия является сильно выраженная анизотропия свойств, что, очевидно, обусловлено его гексаго нальной структурой. Из-за сильно развитой текстуры как в литом, так и в деформированном состоянии механические свойства бериллия различны для различных направлений проведения механических испытаний. Особые опасения при применении бериллия вызывает низкая пластичность в направлении, поперечном направлению кристаллизации или деформации.  [c.455]

В отношении многих металлов часто применяют термин редкие (в смысле малоприменяемые). Однако редкость их может вызываться целым рядом причин малой распространенностью в земной коре рассеянностью их присутствия в рудах и минералах при значительном в целом содержании в земле трудностью их выделения из руды или отделения от других металлов еще недостаточной изученностью свойств, ограничивающей применение. К числу таких редких металлов принадлежат литий, рубидий, цезий, бериллий, галлий, индий, таллий, германий. Из элементов побочных подгрупп к редким принадлежат скандий, иттрий, лантан, актиний, цирконий, гафний, ванадий, ниобий, рений. К числу редких, а точнее рассеянных, принадлежат и лантаноиды (церий и др.), на что указывает их старинное название редкоземельные элементы ( земля — старинное название оксидов).  [c.75]

Применение бериллия в качестве материала оболочки ТВЭЛов (тепловыделяющих элементов из ядерного горючего) позволяет повышать температуру на оболочке до 500—600° С. Свойство бериллия излучать нейтроны при облучении а-части-цами используется для изготовления радиево-бериллиевых и полониево-бериллиевых источников нейтронов. Бериллиевая фольга применяется для изготовления окон в счетчиках Гейгера, сцинтилляционных счетчиках и т. п.  [c.493]

Специальными бронзами называются сплавы на медной основе, содержащие в качестве добавок алюминий, марганец, кремний, бериллий и др. Эти специальные добавки вводятся в бронзы в разных сочетанях для получения соответствующих свойств. Специальные бронзы в зависимости от метода технологической обработки разделяются на обрабатываемые давлением и литейные. Они характеризуются высокими механическими и антикоррозионными свойствами и хорошо обрабатываются резанием, благодаря чему они являются заменителями оловянистых бронз. Большое применение в химическом машиностроении имеют алюминиевые бронзы.  [c.378]


Перспективным является также защитное легирование. В 1931 г. В. А. Переслегин установил, что бериллий, введенный в магниевый сплав в количестве нескольких тысячных долей процента, заметно уменьшает его окисление. По ГОСТ 2856—68 в сплавах типа Мл5 допускается до 0,002% Ве. Имеются сведения об использовании присадки бериллия в сплавах для литья под давлением, в частности на заводах фирмы Volkswagen , ФРГ. Однако до сих пор к применению бериллия относятся с осторожностью, поскольку известно, что при литье в лесчаные формы и в кокиль он огрубляет 3 ерно и ухудшает механические свойства сплава.  [c.77]

Сплавы на основе меди. Латуни, их свойства, маркировка и применение. Бронзы оловянистые, алюминиевые, марганцовистые, свинцовые и бериллие-вые ( состав, свойства, маркировка и области применения ).  [c.10]

Платина—бериллий. Бериллий растворяется в платине в твердом состоянии до 0,25%. Небольшие добавки бериллия очень эффективно изменяют свойства платины. Добавка 0.25% Be увеличивает твердость платины эквивалеит110 добавке 25% 1г (фиг, 31), Сплавы 14 с Be иашли широкое применение в Германии во время второй мировой войны как заменители сплавов Pt с 1г Pt с Rh для электрических контактов, сопротивлений, сосудов для плавки стекла и других целей.  [c.417]

Цирконий и его сплавы. Основное применение как конструкционный материал цирконий находит в ядерной технике — в атомных реакторах — вследствие особого свойства — слабо поглощать тепловые нейтроны. О материале, обладающем таким свойством, говорят, что он имеет малое поперечное сечение поглощения тепловых нейтронов. У циркония сечение поглощения тепловых нейтронов равно 0,18-10" см , у алюминия 0,2Ы0 см , однако он уступает цирконию в коррозионной стойкости, чем и объясняется ислользование циркония. Меньшее сечение поглощения тепловых нейтронов, чем у циркония, имеют магний (0.059-10-2 сл ) и бериллий (0,009-lO см ).  [c.326]

Литейные свойства невысокие, сплав требует усиленного питания во избежание рыхлот и трешин. Из всех практически применяемых сплавов на алюминиевой основе данный сплав наиболее чувствителен к примесям железа и кремния, снижающим его прочность и особенно пластичность. Примесь меди ухудшает коррозионную стойкость. Добавление очень малых количеств бериллия с титаном снижает окисляемость сплава в жидком состоянии. Без бериллия требуется применение защитных присадок к формовочной земле и флюса при плавлении во избежание окисления жидкого сплава и образования черного излома , сопровождающегося понижением механических свойств. При литье в землю рекомендуется усиленное применение холодильников.  [c.154]

Двойные меднобериллиевые сплавы, содержащие менее % бериллия, не обладают способностью к дисперсионному твердению. Однако при введении около 1,5 о никеля или кобальта можно получить сплавы, способные к старению даже при содержании в них бериллия менее 0,2%. Такие сплавы с малым содержанием бериллия при их закалке на твердый раствор и старении требуют применения температур, на 100—200° превышающих обычно применяемые температуры. Характерные для этих сплавов свойства приведены в табл. 13.  [c.66]

Магнии, температура кипении которого (1120") ниже температуры плав-леппя бериллия (1284°), образует с бериллием сплавы, содержащие максимально 0,5—1% магния. Такие сплавы не нашли практического применения и свойства их не определены. Однако при введении в магний или магниевые сплавы менее 0,005% бериллия значительно уменьшается воспламеняемость н затрудняется их окисление при температуре плавления. Присадка небольшого количества бериллии приводит к укруппепию зерна в магниевых сплавах, поэтому в настоящее время бериллием легируют только те сплавы, для которых укрупнение зерна не имеет практического значения.  [c.68]

Подобно никелевобериллиевым сплавам, сплавы бериллия с железом представляют значительный интерес, однако они не нашли достаточно широкого промышленного применения. Кроме того, двойные железобериллиевые сплавы обладают слишком крупнозернистой структурой. Добавка никеля приводит к измельчению зерна и значительно улучшает качество сплава. Сплав, содержащий 1% бериллия и 6% никеля, после его упрочнения закалкой и со-стариванием может достигать твердости по Бринеллю, равной 600. Стали, содержащие 1% бериллия, 12% хрома и 11% никеля, обладают высокими прочностью и твердостью при повышенных температурах. О применении таких сплавов в Германии для изготовления пружин, сохраняющих упругпе свойства при температуре красного каления, сообщалось еще в 1931 г.  [c.78]

Если предел прочности двойных сплавов непрерывно повышается при увеличении содержания бериллия от 10 до 100%, то кривая прочности тройных сплавов системы А1—Be—Mg располагается значительно выше и достигает максимума приблизительно при 70 % Be. При 70 % Be относительное удлинение тройного сплава сохраняется па достаточно высоком уровне (около 10%). При дальнейшем повышении содержания бериллия прочность понижается при одновременном резком снижении пластичности, поэтому сплавы системы А1—Be—Mg при содержании бериллия более 70—75 % (более 80 об долей, %) для практического применения не представляют особого интереса. Резкое снижение относительного удлинения в сплавах данной концентрации объясняется тем, что количество (А1 г фазы в структуре сплава уже недостаточно и она перестает оказывать пластифицирующее действие, как это про исходит в сплавах, более богатых ато Лазой. Сплавы с малым количеством [А11-фа.чы можно рассматривать бериллий, содержащий некоторое ко личество легкоплавкой составляющей, ухудшающей его свойства, особенно при температурах свыше 500—600 >-" В этом случае предпочтительно примв  [c.330]

При переработке рудных концентратов на соединения бериллия наибольшее распространение получили технологические схемы, основанные на применении фторидных и сульфатных методов вскрытия. На первой стадии металлургической переработки образуются растворы бериллия, отличающиеся низким содержанием элемента (от 3—5 до 13 г/л) и наличием в них примесей. Это свидетельствует о возможности применения ионного обмена для извлечения, концентрирования бериллия и очистки его растворов, полученных при вскрытии рудных концентратов. При этом может быть использовано свойство бериллия образовывать во фторидных растворах комплексные анионы BeF и Вер2- которые хорошо сорбируются анионитами [109]. При решении задач очистки фторсодержащих растворов бериллия от примесей катионов металлов могут быть применены катионообменные смолы. При этом бериллий практически не будет сорбироваться катионитом. В сернокислых растворах бериллий может быть отделен от алюминия и железа с помощью анионитов. Сорбироваться в этом случае будут только примеси [109].  [c.121]

Использование ядерного топлива в энергетике обусловливает применение в активной зоне реактора материалов так называемого ядерного класса чистоты, т. е. обладающих малыми сечениями захвата и пoгJJoщeния нейтронов. Уровень требований к составу и свойствам используемых в реакторостроении материалов весьма высок. Поэтому необходимо было создать весьма совершенную технологию производства новых материалов и полуфабрикатов, специальных методов и средств их контроля. В настоящее время разработана и освоена технология промышленного получения таких материалов, как бериллий, графит ядерной чистоты, тяжелая вода, циркониевые -и ниобиевые сплавы, металлический кальций, бористые и теплостойкие нержавеющие стали, бор, обогащенный изотопом В, редкоземельные элементы.  [c.88]

Наиболее огнеупорная, а также наименее химически активная окись — окись тория. Она пригодна для применения в тиглях, предназначенных для сплавов с очень высокой температурой плавления. Тигли, набитые окисью тория, могут быть применены до 2700°. Окись магния, окись бериллия и окись циркония тоже представляют собой материалы с высокими огнеупорными свойствами, но они более химически активны и поэтому менее пригодны, чем окись тория. Окись алюминия имеет максимальную температуру службы до 1900—1950°, что является пределом, до которого можно применять оптический пирометр с исчезающей нитью, смотровой трубой из корундиза и экраном как источником излучения абсолютно черного тела. Современное производство прямых непористых смотровых труб из окиси тория значительно расширяет область применения этого метода. При более высоких температурах возможно измерение лучеиспускания непосредственно поверхности металла только оптическим пирометром или фотоэлектрическим элементом. В этом случае поверхность металла не удовлетворяет условиям излучения абсолютно черного тела, и поэтому такой метод можно применять только в том случае, если известны данные об эмиссионной способности металла и если для градуировки имеются в распоряжении металшы с известной точкой плавления и эмиссионной способностью, близкой к исследуемому сплаву. Однако точность такого метода не очень высока. Подробности мы рассматриваем ниже при описании метода Мюллера. Вольфрам-ирридиевые, вольфрам-мо-либденовые и различные другие термопары могут быть применены для измерения высоких температур однако эти термопары нельзя считать удовлетворительными ввиду трудности получения повторимых результатов (см. ниже).  [c.179]


Армирующие компоненты, или наполнители во многом определяют свойства КМ. В настоящее время широкое применение нашли армирующие компоненты, изготовленные из 1) металлов и сплавов (сталь, бериллий, вольфрамат титана и др.) 2) неметаллов, таких как углерод и бор 3) керамики AljOj, Si , TiBj, Ti , AIN и др. 4) стекол, таких как стекло Е и стекло S 5) органических веществ, таких как лавсан, кевлар, полиэтилен и др.  [c.187]

Наиболее важными факторами, способными повлиять на предпочтение композиционного материала с титановой матрицей материалу с менее прочной матрицей, являются свойства во внеосевых направлениях и связанные с дорогостоящим методом трудности изготовления. Преимущества большей изотропности, достижимой с титановой матрицей, можно проиллюстрировать на примере системы титан — бериллий. Был изготовлен горячепрессованный материал Ti — 6% А1—4% V с применением 35 об. % переплетеной бериллиевой проволоки, обладавший в обоих главных направлениях модулем упругости 24-10 фунт/кв. дюйм (16 874 кгс/мм ) и прочностью 147 000 и. 84 ООО фунт/кв. дюйм (103,3 и 59 кгс/мм ) в продольном и поперечном направлениях. Композиционные материалы одноосноармированные бором (с покрытием или без него) обнаружили близкие значения жесткости в двух главных направлениях, но отличались значительно большим расхождением прочности вследствие расщепления волокон. В связи с этим представляется вполне очевидным, что одно из направлений будущих работ будет связано с попытками производителей волокна повысить прочность волокон этого типа в диаметральном направлении. Как указывалось ранее, заметное начало этому положило внедрение волокон диаметром 5,6 мил (0,14 мм).  [c.333]


Смотреть страницы где упоминается термин Свойства и применение бериллия : [c.58]    [c.330]    [c.74]    [c.231]    [c.392]    [c.600]    [c.12]    [c.68]    [c.933]    [c.21]    [c.325]   
Смотреть главы в:

Металлы и их заменители  -> Свойства и применение бериллия



ПОИСК



Берилл

Бериллий

Бериллий применение



© 2025 Mash-xxl.info Реклама на сайте