Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бериллий Механические свойства

Малой плотностью и большой удельной прочностью обладает проволока из бериллия. Механические свойства проволоки сильно зависят от  [c.450]

Рис. 435. Влияние кислорода на механические свойства бериллия Рис. 435. <a href="/info/469779">Влияние кислорода</a> на механические свойства бериллия

О механических свойствах бериллия (свойства вдоль и поперек оси дефор-ации, свойства при разных температурах) дают представление кривые, приведенные на рис. 434.  [c.601]

Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]

Рис. 3.15. Механические свойства стронция, урана и бериллия при высоких температурах [6] а —стронций литом б — уран -----бериллий Рис. 3.15. Механические <a href="/info/87603">свойства стронция</a>, урана и бериллия при <a href="/info/46750">высоких температурах</a> [6] а —стронций литом б — уран -----бериллий
Н. Н. Белоусов и др. [4], исследуя влияние малых добавок (до 0,2%) бериллия, циркония, титана и марганца на структуру сплава АЛ8 в слитках (Z)=120 мм, Я/D =1,5), кристаллизация которых происходила под атмосферным и поршневым давлением 200 и 400 МН/м , показали, что, как и для других сплавов, ощутимое улучшение механических свойств наблюдается при поршневом давлении до 200 МН/м . Более высокое давление не приводит к, заметному улучшению свойств сплава. Наряду с прочностными повышаются и пластические свойства. В этом отношении поршневое давление дает максимальный эффект в сплаве АЛ8 без добавок или с добавкой какого-либо одного элемента. Введение в сплав всех указанных добавок дает менее значительный эффект.  [c.123]


Рис. 26. Влияние температуры на механические свойства бериллия чистотой 99,9 % Рис. 26. <a href="/info/222925">Влияние температуры</a> на механические свойства бериллия чистотой 99,9 %
Механические свойства литого и обработанного бериллия даны ниже.  [c.519]

Механические свойства бериллия, спеченного из порошка  [c.521]

Механические свойства бериллия чистотой 99,5%, кованого и отожженного  [c.522]

Механические свойства Характеристика бериллия  [c.522]

Механические свойства образцов бериллия в поперечном и продольном направлениях (после прокатки)  [c.523]

Сплавы меди. В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь Ор бронз может быть 800—1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п. Введение в медь кадмия при сравнительно малом снижении удельной проводимости (см. рис. 7-12) значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (Ор —до 1350 МПа). Сплав меди о цинком — латунь — обладает достаточно высоким относительным удлинением  [c.200]

В настояш,ем разделе основное внимание уделяется никелю, цирконию, меди, бериллию, алюминию, магнию, молибдену, ниобию, танталу и вольфраму. Данные по влиянию излучения на механические свойства этих металлов и их сплавов сведены в табл. 5.6—5.13.  [c.253]

Примером прямой линейной корреляции между скоростью изнашивания, рассчитанной по эмпирической формуле, связывающей износ с коэффициентом трения и механическими свойствами материала, и полученной на лабораторной установке, является график на рис. 76. Он заимствован из работы [50], проведенной для исследования изнашивания в отсутствие смазки керамических материалов торцевых уплотнений. К плоскости вращавшегося диска из керамического материала прижимались три неподвижных образца (материал образцов — окись магния, окись бериллия, окись алюминия). Давление при испытании повышалось ступенями от 0,35 до 3,5 кгс/см, а скорость диска была 0,5 и 1 м/с.  [c.104]

Подробные сведения о механических свойствах бериллия можно найти в ряде источников ).  [c.327]

Несмотря на то, что механическую нагрузку ТВЭЛ принимает урановый стержень, а не его защитная оболочка, материал ее должен также удовлетворять определенным механическим свойствам. Чтобы противостоять разрушению при изменении форм и размера урановых стержней или других видов ядерного горючего, она должна иметь достаточно удовлетворительную пластичность. Отличные качества в этом отношении показывают покрытия, получаемые конденсацией бериллия с магнием.  [c.332]

Сплавы бериллия с медью — берил-лиевые бронзы обладают весьма высокими механическими свойствами при повышенных температурах, а также устойчивостью по отношению к окислению. Бериллий широко используется при изготовлении рентгеновских трубок, а также как источник нейтронов. Находит применение в реакторостроении как замедлитель быстрых нейтронов.  [c.372]

Отметим, что в данном случае рассматривается холодная прокатка бериллия без оболочек, обеспечивающая отличное качество поверхности фольги и высокие показатели физико-механических свойств. Общая величина пластической деформации бериллиевой фольги между промежуточными отжигами может достигать (60- 70) % без видимых признаков разрушения. Таким образом, с позиций рассмотренного подхода перспективна холодная прокатка бериллия, между тем как в мировой практике обработки этого металла сложилось мнение о невозможности такой операции из-за хрупкости этого металла.  [c.286]


Цирконий, будучи введен в сплавы магния с цинком, измельчает зерно, улучшает механические свойства и повышает сопротивление коррозии. Редкоземельные металлы и торий повышают жаропрочность магниевых сплавов. Бериллий в количестве 0,005— 0,012 % уменьшает окисляемость магния при плавке, литье и термической обработке.  [c.402]

МЕХАНИЧЕСКИЕ СВОЙСТВА Бериллий  [c.62]

Механические свойства бериллия связаны со способом его изготовления, однако в основном они зависят от наличия у него гексагональной плотно-упакованной кристаллической решетки, характеризующейся высокой степенью ориентации. При комнатной температуре напряжение излома по плоскости базиса меньше напряжений сдвига по плоскостям призмы 10 10 [31]. Следовательно, при комнатной температуре бериллий подвержен излому по плоскости основания, хотя он обладает значительным удлинением по плоскостям призмы при любой степени чистоты, даже при содержании до 2% присадок других элементов.  [c.62]

В последнее время уникальные физические, химические и механические свойства бериллия вызвали огромный интерес к нему как к конструкционному и термостойкому материалу. Важнейшими из этих свойств бериллия являются его малая плотность, высокая температура плавления, очень большой модуль упругости, большая теплоемкость, стойкость против окисления, хорошие механические свойства при повышенных температурах, а также легкость обработки резанием металла, полученного методом порошковой металлургии, что позволяет получать изделия очень точных размеров.  [c.74]

SS. Механические свойства бериллия при растяжении, сжатии  [c.327]

Механические свойства при растяжении прессованного прутка из бериллия при высоких температурах После отжига  [c.329]

Рис. 16. Механические свойства сплавов с различным содержанием бериллия штриховая линия — AI — Be сплошная линия Al-Be-Mg IS] Рис. 16. <a href="/info/57675">Механические свойства сплавов</a> с различным содержанием бериллия <a href="/info/1024">штриховая линия</a> — AI — Be сплошная линия Al-Be-Mg IS]
Сплавы меди с алюминием, кремнием, бериллием и другими элементами также называются бронзами в отличие от оловя-ннстых их называют соответственно алюминиевыми, кремнистыми и т. д. Малой величиной усадки оловянистая бронза превосходит эти бронзы, но они в свою очередь превосходят оловя-нистую в других отношениях по механическим свойствам (алюминиевая, кремнистая бронза), но химической стойкости (алюминиевая бронза), по жидкотекучести (кремнецннковистая бронза). Олово — дефицитный элемент, поэтому эти бронзы, кроме, разумеется, бериллиевой, дешевле оловяннстой.  [c.614]

Сплавы А1—Mg. Сплавы алюминия с магнием (табл. 23) имеют низкие литейные свойства, так как они содержат мало эвтектики. Характерной особенностью этих сплавов является хорошая коррозионная стойкость, повышенные механические свойства и обрабатываемость резанием. Добавление к сплаву (9,5—11,5 % Mg) модифицирующих присадок (Ti, Zr) улучшает механические свойства, а бериллия уменьишет окисляемость расплава, что позволяет вести плавку без защитных флюсов,  [c.336]

Замечание 6.2.2. Полученные выше уравнения могут применяться не только для описания процесса тепло- и мге-сообмена в теплозащитных покрытиях, но и для моделирования на ЭВМ горения смесевых твердых топлив (СТТ) [З П. Типичные составы СТТ содержат по массе до 70—80% твердого окислителя (обычно это перхлорат аммония (ПХ ) NH4 IO4) и 10—17% горючего (обычно битум, бутадиенов яй каучук, фенолоформальдегидная смола). Для повышения теплоты сгорания в СТТ, как правило, вводят метал, 1Ы (алюминий, бор, магний, бериллий, цинк и др.) в порошкообразном состоянии, а также пластификаторы (для улучшения механических свойств), катализаторы и различные технологические добавки. Роль связующего в такой многокомпонентной гетерогенной системе играет полимерное горючее, которое поэтому называют также связкой.  [c.242]

Особую группу составляют специальные бронзы, содержащие бериллий, кадмии, хром и другие элементы, обладающие высокой тепло- и электропроводностью, жаропрочностью п сочетании с высокими механическими и антикоррозионными свойствами. Наибольший интерес представляют бериллиевые бронзы (Бр. Б2, Бр. Б2,5), имс юшие исключительно высокие механические свойства. Эти бронзы способны облагораживаться.  [c.230]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]


Эффективным методом улучшения физико-механических свойств берилл иевых бронз является микролегирование магнием. Выплавленные в промышленных условиях бериллиевые бронзы, микролегированные магнием в количестве 0,1%, имеют if редел упругости ofo.002 75-Т-80 кгс/мм , высокую стойкость против статической и циклической релаксации напряжений и повышенную циклическую, прочность по сравнению с бронзами стандартного состава. Положительное влияние магния на структуру и свойства бериллиевой бронзы связано с его достаточно высокой поверхностной активностью (горофильностью) [127].  [c.60]

Фиг. 54. Изменение механических свойств бериллие-вой бронзы Бр Б-2 в зависимости от наклёпа. Фиг. 54. Изменение механических свойств бериллие-вой бронзы Бр Б-2 в зависимости от наклёпа.
К данной группе относятся сплавы, содержащие в качестве основных добавок кадмий, хром, бериллий и цирконий. Они обладают высокой электропроводностью, теплоп])оводно-стью и высокими механическими свойствами. Из кадмиевых бронз изготовляют троллейные, телеграфные и телефонные провода. Особо важное значение имеют сплавы с хромом, из которых изготовляют контакты для электросварки и прочие детали, от которых наряду с высокими механическими свойствами требуются высокая электропроводность и теплопроводность. Вышеуказанные сплавы, а также сплавы с добавками циркония, кобальта, никеля и др. широко применяются в оборонной промышленности (кабели для взрыва мин и для передач на короткие расстояния), для изготовления электрических контактов, колец коллекторов, плоских и спиральных пружин, лопаток паровых турбин, деталей в авиамоторостроении, цилиндров для тиснения в текстильной промышленности и для изготовления трубок, прутков и прочих деталей в химической промышленности.  [c.124]

Литейные свойства невысокие, сплав требует усиленного питания во избежание рыхлот и трешин. Из всех практически применяемых сплавов на алюминиевой основе данный сплав наиболее чувствителен к примесям железа и кремния, снижающим его прочность и особенно пластичность. Примесь меди ухудшает коррозионную стойкость. Добавление очень малых количеств бериллия с титаном снижает окисляемость сплава в жидком состоянии. Без бериллия требуется применение защитных присадок к формовочной земле и флюса при плавлении во избежание окисления жидкого сплава и образования черного излома , сопровождающегося понижением механических свойств. При литье в землю рекомендуется усиленное применение холодильников.  [c.154]

Бериллий Be (Beryllium). Белый бле- стящий, твердый, ковкий металл. Распространенность в земной коре 6.10" %. tnjt = 1284° С, t un = 2570° С плотность 1,82. В природе встречается только в виде соединений (минерал берилл, разновидности берилла — изумруд и аквамарин). Получается путем электролиза фтористых солей. Гидрат окиси Ве(ОН)а, соответствующий окислу БеО, обладает ам-4отерными свойствами. Добавление бериллия к некоторым видам сталей и сплавов придает последним высокие механические свойства.  [c.372]

Отмечается охрупчивающее действие частиц ВеО, связанное с прехшевременным разрушением, которое начинается в местах нахождения этих частиц [82-85]. Поскольку частицы ВеО - концентраторы напряжений, их влияние на механические свойства подобно влиянию большого числа микронадрезов. Под воздействием растягивающих напряжений вокруг каждой частицы образуются пустоты, являющиеся зародьшшми хрупких трещин, распространение которых приводит к макроразрушению образца. По сведениям [85], попытки получить пластичный бериллий при комнатной температуре путем его глубокой очистки оказались безуспешными.  [c.272]

Механические свойства бериллия, горячевыдавлениого из хлопьевидного (чешуйчатого) и литого металла, а также механические свойства заготовок, горячспрессованных в вакууме из бериллиевого порошка (QMV), п выдавленных из них профильных изделий приведены в табл. С и 7.  [c.62]

HhKOTOPblF МЕХАНИЧЕСКИЕ СВОЙСТВА ВЫДАВЛЕННОГО БЕРИЛЛИЯ ПРИ КОМНЛТНОП ТЕМПЕРАТУРЕ В ЗАВИСИМОСТИ ОГ НАПРАВЛЕНИЯ ВЫРЕЗКИ ОБРАЗЦА  [c.63]

МЕХАНИЧЕСКИЕ СВОЙСТВА БЕРИЛЛИЯ, ПОЛУЧЕННОГО METOДOiM ПОРОШКОВОЙ МЕТАЛЛУРГИИ. ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ  [c.63]

Механические свойства при повышенных температурах бериллия, горя-чевыдавлеипого из хлопьевидного металла, а также из порошка и отливок, приведены в табл. 9. Испытания, результаты которых приведены в этой таблице, были проведены в интервале температур от комнатной до 800°. Необходимо отметить, что при 400 относительное удлинение достигает максимальной величины, уменьшаясь при более высоких температурах. Наиболь-  [c.65]

Примеси, в частности алюминий) понижают пластичность бериллия (рис. 12) механические свойства меняются в зависимости от тина заготовки, величины зерна и чистоты металл (табл. 81, рис. 13). Самые высокие свойства у 3aiOTOBOK, выдавленных яз мелкозернистых порошков высокой чистоты еще более высокие прочностнмв свойства имеет проволока (табл. 82)-  [c.322]

Механические свойства при растяжении, сжатии различных полуфабрикатов из бериллия приведены в табл. 85, На свойства бериллия сильно влияют поверхностные концентраторы и общее состояние поверхности (табл. 86, рис. 14). Чувствительность к концентрации напряжений прессовапиого прутка в зависимости от коэффициента концентрации напряжений Kt приведена в табл. 87. Уменьшения влияния концентраторов достигают травлением и отжигом (табл. 88, 89). При повышении температуры испытаний происходит заметное снижение прочности и увеличение пластичности (табл. 90, рис. 15). Бериллий обладает сравнительно невысоким сопротивлением ползучести (табл. 91), модуль упругости снижается при 100 С до 264 700 МПа при 300 С-до 235 300 МПа при W°G—до 147 000 МПа. При минус О G прочность снижается с 539—  [c.325]

Механические свойства проволоки диаметром 0,125 мм из бериллия, получеиного разными способами [5]  [c.326]


Смотреть страницы где упоминается термин Бериллий Механические свойства : [c.601]    [c.200]    [c.524]    [c.74]    [c.372]    [c.326]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.441 ]

Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.312 ]



ПОИСК



Берилл

Бериллий



© 2025 Mash-xxl.info Реклама на сайте