Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Невесомость космическая

Очень перспективно выращивание монокристаллов в космосе, где удачно сочетаются глубокий вакуум и невесомость. Космический ваку-  [c.78]

Отсюда находим, что когда a=g, т. е. когда лифт свободно падает, iV=0 и груз никакого давления на пол АВ кабины не оказывает (пол не служит ему опорой). Поэтому груз по отношению к лифту будет оставаться в покое ( висеть ) в любом месте кабины, если его туда поместить. На чашу весов, находящихся в кабине, груз тоже не окажет давления и они покажут, что вес груза равен нулю. Аналогичное состояние будет и у груза, помещенного в кабину поступательно движущегося космического летательного аппарата. Такое состояние груза (тела) и называют невесомостью.  [c.257]


Однако из изложенного не видно, чем же физически состояние тела при невесомости отличается от состояния, которое будет у тела, когда оно просто покоится на поверхности Земли или движется под действием каких-нибудь других сил, например силы тяги. Между тем, что в этих состояниях есть существенное различие, показывает эксперимент. Так, если в кабину падающего лифта или космического летательного аппарата поместить сосуд с жидкостью, не смачивающей его стенок (например, с ртутью), то при невесомости жидкость не заполнит сосуд, а примет в нем форму шара и сохранит ее и вне сосуда. Объясняется это, очевидно, тем, что при невесомости изменяется характер внутренних усилий в теле (в данном случае в жидкости). Следовательно, чтобы выяснить, в чем состоит отличительная особенность состояния невесомости, надо обратиться к рассмот ению возникающих в теле внутренних усилий.  [c.258]

Таким образом, если сопротивление воздуха пренебрежимо мало, то любое падающее на Землю или брошенное с ее поверхности тело, движущееся поступательно, будет находиться в состоянии невесомости. В частности, в состоянии невесомости находятся движущиеся вне земной атмосферы искусственные спутники Земли или космические летательные аппараты и все находящиеся в них тела.  [c.260]

Учет невесомости приобретает важное значение при космических полетах, поскольку невесомость изменяет условия работы многих устройств и приборов, а те из них, в которых, например, используются физические маятники или свободная подача жидкости и т. п., вообще оказываются непригодными. Важную роль в условиях невесомости начинают играть не зависящие от внешних воздействий и сохраняющиеся при невесомости молекулярные силы (в земных условиях малые по сравнению с взаимными давлениями, обусловленными весомостью), что меняет характер ряда явлений. Например, в условиях невесомости смачивающая жидкость, заполняющая замкнутый сосуд, под действием молекулярных сил распределится равномерно по его станкам. Жидкость же, не смачивающая стенок, примет форму шара, на что уже указывалось .  [c.260]

Следовательно, при свободном движении космического корабля космонавт находится в состоянии невесомости.  [c.169]

Динамическая теорема Кориолиса позволяет рассмотреть состояние невесомости, которое в частности возникает при движении космических кораблей как искусственных спутников вокруг Земли. При рассмотрении невесомости материальной точки целесообразно ее представлять как твердое тело, имеющее поверхность, которой оно может соприкасаться с другими телами. Будем предполагать, что скорости и ускорения всех точек этого тела одинаковы, а реакции соприкасающихся тел приводятся к равнодействующей.  [c.237]


Проверим выполнение условия невесомости для материальной точки, находящейся в космическом корабле, который движется поступательно относительно Земли в качестве ее искусственного спутника за пределами атмосферы. За инерциальную систему отсчета можно принять систему отсчета, скрепленную с Землей.  [c.239]

Если корабль не испытывает действия других сил, кроме силы тяготения Земли, то его ускорение от этого тяготения тоже равно g, так как ускорения от силы тяготения не зависят от масс тел, а зависят только от расстояния этих тел до центра Земли. Таким образом й — = а = и, следовательно, условие невесомости точки Р - - Ф — О выполняется. Материальная точка будет находиться в невесомости и, следовательно, не должна оказывать давления на любое тело, движущееся вместе с космическим кораблем.  [c.239]

В космическом корабле, который, кроме поступательного движения имеет также и вращение, каждая из материальных частиц корабля не находится в состоянии невесомости, хотя весь корабль как целое находится в состоянии невесомости. Для него главный вектор и главный момент поверхностных сил равны нулю, так как нет тел, с которыми корабль соприкасается своей поверхностью.  [c.239]

В невесомости находится земной шар и другие планеты солнечной системы, их спутники, если пренебречь действием на них метеоритов, космического излучения и т. д.  [c.239]

Динамическая теорема Кориолиса позволяет рассмотреть состояние невесомости, которое, в частности, возникает при движении космических кораблей как искусственных спутников Земли, При рассмотрении невесомости материальной точки целесообразно ее представлять как твердое тело, имеющее поверхность, которой оно может соприкасаться с другими телами. Будем предполагать, что скорости и  [c.257]

Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения модуля скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением поэтому в корабле наблюдается явление невесомости.  [c.25]

В состоянии невесомости тело, находящееся под действием сил веса, сохраняет внутри космического корабля состояние равновесия или покоя относительно системы координат, связанной с космическим кораблем. Ясно, что при этом частицы тела освобождаются от взаимодействий и совершают движение относительно приближенно инерциальной системы отсчета вместе с кораблем как свободные материальные точки. Это исчезновение сил взаимодействия между частицами тела вызывает у космонавтов те субъективные ощущения, которые, по-видимому, породили термин невесомость .  [c.447]

Когда космический корабль опускается на Землю и входит в более плотные слои атмосферы, снова становится заметным сопротивление воздуха, направленное навстречу скорости. Кроме того, для уменьшения скорости корабля часто применяют двигатели, создающие силу тяги, также направленную против скорости. Сила сопротивления воздуха и сила тяги тормозящих двигателей нарушают состояние невесомости, и при спуске корабля возникают перегрузки такого же характера, как и при подъеме корабля (конечно, величина и направление ускорения при спуске могут значительно отличаться от величины и направления ускорения при подъеме). Однако поскольку и в том и в другом случае ускорение будет иметь большую вертикальную составляющую, направленную вверх, то как при подъеме, так и при спуске возникают перегрузки такого характера, как будто сила земного тяготения сильно возрастает.  [c.191]

Полная компенсация сил инерции и сил тяготения необходима не только для того, чтобы наступило состояние невесомости, но и чтобы это состояние могло сохраняться достаточно долгое время. Это Б одинаковой мере относится как к лифту, так и к космическому кораблю и ко всем аналогичным случаям мы поясним это обстоятельство на конкретном примере космического корабля.  [c.357]


Как уже было отмечено в 43, сила тяготения является массовой силой и поэтому всем элементам тела сообщает одинаковые ускорения (конечно, при условии, что это тело находится в однородном поле сил тяготения). Массовой является и сила инерции (так как она тоже пропорциональна массе элемента тела, на который действует), и поэтому, если на тело действует только сила инерции, то она также не вызывает деформаций тела. Таким образом, если на тело одновременно действуют сила тяготения и сила инерции, но не действуют никакие другие силы, то тело находится в состоянии невесомости. При этом совсем не обязательно, чтобы силы инерции и силы тяготения как раз компенсировали друг друга. Но если силы инерции и силы тяготения не компенсируют друг друга, то поведение тела в космическом корабле меняется.  [c.357]

Несвободные тела (т. е. прикрепленные к бортам или дну корабля) под действием некомпенсированного избытка сил инерции или сил тяготения деформируются, и состояние невесомости во всем космическом корабле будет нарушено. Таким образом, для того чтобы в космическом корабле длительно сохранялось состояние невесомости, должна соблюдаться полная компенсация сил инерции и сил тяготения.  [c.358]

Мы все время говорили о состоянии и движении тел, находящихся внутри космического корабля. Но все сказанное можно распространить на тела, находящиеся вне космического корабля, но только при том условии, что эти тела до того, как попали в окружающее корабль космическое пространство, находились внутри корабля или были к нему прикреплены и при удалении от корабля практически пе приобрели никакой скорости относительно корабля. Если эти условия соблюдены, то тело, покинувшее корабль, обладает практически той же скоростью относительно земной системы отсчета, какой обладает корабль, и находится на орбите корабля. Следовательно, это тела превращается в искусственный спутник Земли, движущийся по орбите, очень близкой к той орбите, по которой движется космический корабль. Это тело вне корабля будет находиться в состоянии невесомости, так же как и тела внутри корабля.  [c.359]

Центробежная сила инерции равна по абсолютному значению и противоположна по направлению силе, сообщающей телу центростремительное ускорение, т. е. силе гравитационного притяжения Земли (см. 23). Итак, в этой системе отсчета на тело действуют две силы сила тяготения к Земле и центробежная сила инерции. Так как эти силы равны по абсолютному значению и направлены в противоположные стороны, то они уравновешивают друг друга и сила тяжести при этом как бы отсутствует. Поэтому не возникает деформации тела, обусловленной силой тяжести, и тело находится в состоянии невесомости. В этом случае все тела внутри космического корабля и вблизи него движутся по отношению к кораблю так, как если бы на них не действовала ни одна из этих сил. Иначе говоря, в этом случае система отсчета, связанная с кораблем, может в некоторой области считаться инерциальной. В этом и состоит преимущество такой системы отсчета, так как она приводит ко многим упрощениям при рассмотрении движения тел в космическом корабле и вблизи него.  [c.99]

Газодинамические органы управления работают в сложных условиях. Прежде всего они взаимодействуют с высокоскоростной, сильно нагретой, содержащей различные примеси струей продуктов сгорания топлива двигательной установки. Такое взаимодействие приводит к значительным резко возрастающим динамическим нагрузкам, обусловленным быстрым выходом двигателей на рабочий режим. Газодинамические органы функционируют в условиях невесомости в космическом пространстве и испытывают весьма большие перегрузки при входе спускаемых аппаратов в атмосферу планет.  [c.300]

Видимо, это и наблюдали в экспериментах на космической станции в условиях практической невесомости [53], когда отсутствуют привычные в земных условиях массовые силы, обеспечивающие всплытие пузырька в жидкости. Интересно, что оторвавшиеся пузырьки в этих экспериментах в случае насыщенной жидкости останавливались на некотором расстоянии от обогреваемой стенки, где образовывались большие скопления пара.  [c.284]

Теоретический курс подготовки личного состава включал комплекс сведений по астрономии, астрофизике и геофизике, астронавигации, ракетной и космической технике, космической биологии и медицине. Тренировочные занятия, помимо общей физической подготовки, предусматривали парашютные прыжки и полеты на самолетах по параболической траектории, при которых имитировались кратковременные условия невесомости, тренировку на центрифуге при достаточно больших перегрузках и тренировку на вибростендах.  [c.439]

В числе многих других результатов исследований были получены экспериментальные данные о структуре границы горизонта, необходимые для выбора опорного слоя в оптическом диапазоне волн при конструировании навигационных приборов, установлены возможности ориентации космического корабля по звездам и выполнения астронавигационных измерений с помощью секстанта. Кроме того, было исследовано поведение жидкости в условиях невесомости, проведены сравнительные вестибулярные пробы в тех же условиях и наблюдения за физиологическим состоянием членов экипажа на различных этапах полета.  [c.447]

Первым начал теоретически исследовать проблему космического полета К. Э. Циолковский. В 1883 г. он написал (в форме научного дневника) работу Свободное пространство , в которой рассмотрел ряд задач классической механики о движении тел в пространстве без действия силы тяжести и сопротивления окружающей среды [1]. В рукописи нет количественных зависимостей и все рассуждения носят качественный характер, тем не менее можно считать, что в ней впервые в истории науки исследованы различные физические явления в условиях открытого космического пространства с учетом его основного фактора — невесомости.  [c.434]


Изобретателям аплодируют редко, хотя решаемые ими технические задачи, непрерывно усложняясь, напоминают иногда эволюцию цирковых номеров. С такой точки зрения интересно взглянуть на развитие конструкций насосов. Сначала они служили только для перекачки воды — жидкости податливой, неагрессивной. Это была предельно простая задача. Потом появились насосы для перекачки керосина, бензина, кислот, различных летучих и легко воспламеняющихся ядовитых и агрессивных составов. Понадобились взрывобезопасные конструкции, снабженные нейтрализаторами статического электричества, герметическими уплотнениями, стойкой футеровкой и т. д. По мере развития техники производственники сталкивались со все новыми жидкостями невероятно разнообразных свойств, причем одновременно расширялись диапазоны всех рабочих параметров — давлений, скоростей, температур, и всякий раз в технические требования к насосам приходилось включать все новые условия. Без преувеличения можно сказать, что каждый шаг технического прогресса обязательно сопровождается появлением насосов принципиально новых типов. Недаром эти устройства, казалось бы, очень узкого назначения патентоведы выделили в отдельный 59-й класс. Так, с развитием космонавтики появились насосы для перекачки сжиженного азота, водорода и кислорода при температурах порядка двухсот градусов холода в условиях невесомости и космического вакуума. Техника сверхпроводимости вызвала к жизни насосы для жидкого гелия, работающие вообще близ абсолютного нуля, радиотехника и телемеханика стимулировали появление аппаратов, способных вылавливать чуть не отдельные молекулы газа, ядерная энергетика породила насосы для горячих радиоактивных субстанций. Можно еще упомянуть насосы для абразивных жидкостей, которые обычную конструкцию съедают за несколько часов, насосы для вязких нефтей, битумов и лечебных грязей, насосы, гасящие пену, и т. д. и т. п.— имя им легион  [c.163]

Румянцев В. В. О движении и устойчивости твердого тела с ротором и жидкостями, обладающими поверхностным натяжением.— В кн. Введение в динамику твердого тела с жидкостью в условиях невесомости. Математические методы в динамике космических аппаратов. М. ВЦ АН СССР, 1968, вып. 6, с. 222—249.  [c.30]

В медико-биологическом аспекте бы.ло необходимо решение кардинальных проблем, связанных с непривычным воздействием на организм человека таких неблагоприятных факторов космического полета, как перегрузки на его активном участке (участке выведения корабля на орбиту) и на участке снижения, шум и вибрации при работе двигателей, невесомость, космическое излучение и пр. Нужна была разработка специа.льных типов одежды (скафандров), защищающей космонавтов от опасных последствий аварийной разгерметизации корабельных кабин, и соответствующая разработка особого пищевого рациона. Наконец, необходимо были установление жестких, тщательно обоснованных медицинских показателей отбора экипажей космических кораблей и составление программ и методики всесторонней специальной подготовки космонавтов [10].  [c.438]

С некоторой поправкой на неоднородность поля тяготении, малой в сравнительно ограниченных областях наблюдения явления невесомости (кабина самолета или ракеты), можно считать, что действия полей сил инерции и тяготения в данной области наблюдения уравновешиваются. Неинерциальную систему отсчета, движущуюся поступательно с общим для всех ее точек ускорением, равным ускорению данной движущейся точки по отношению к абсолютной, а также галилеевым системам отсчета, называют сопутствующей системой отсчета. В сопутствующей системе материальная точка находится в состоянии безразличного равновесия. В частном случае движения в поле тяготения в сопутствующей системе, связанной с кабиной самолета или космического корабля, наблюдается состояние неве сомости.  [c.427]

Состояние невесомости наступает в баллистических ракетах ) и космических кораблях после того, как прекратилась работа двигателей и ракета или космический корабль вышли из плотных слоев атмосферы. Вначале под действием силы тяги реактивных двигателей (см. 124), направленной вверх, ракета или корабль движутся с большим ускорением о и набирают вертикальную скорость. В это время на корабль и находящиеся в нем тела, помимо силы земного тяготения и силы тяги двигателей, действует сила сопротивления воздуха, направленная против скорости корабля, т. е. ВНИИ, и несколько уменьшающая ускорение корабля. Но все же это ускорение а по величине значительно превосходит ускорение свободного падения g (например, по данным иностранной печати а может достигать 9—10 ). В этом случае корпус корабля и все тела в кабине корабля будут находится в таком же состоянии, как тела, взвешиваемые в кабнне лифта, движущегося кверху с ускорением а.  [c.190]

После того как ракета или космический корабль достигли требуемой большой скорости, которая в зависимости от назначения ракеты или космического корабля должна быть различной (см. 76), двигатели выключаются если при этом космический корабль уже поднялся на такую высоту, где плотность атмосферы очень мала и поэтому она не создаег сколько-нибудь заметного сопротивления движению, то корабль и все заключенные в нем тела находятся под действием только сил тяготения Земли, Луны, планет и Солнца (какие из этих сил практически следует учитывать — зависит от места нахождения корабля). Вследствие этого для кораб.пя и всех находящихся в нем тел наступает состояние невесомости. Исчезают деформации тел и обусловленные ими силы, действующие со стороны частей тела друг на друга и со стороны одних тел на другие например, тела перестают давить на подставки, на которых они покоятся, и если тело приподнять над подставкой, то оно будет покоиться в таком положении ( висеть в воздухе) жидкость, налитая в сосуд, перестанет давить на дно и стенки сосуда, поэтому она не будет вытекать через отверстие внизу сосуда и ее надо будет через это отверстие выдавливать отвесы будут покоиться в любом положении, в котором их остановили. Тела, которым сообщена относительно кабины корабля начальная скорость в любом направлении, будут двигаться в этом направлении прямолинейно и равномерно (если пренебречь сопротивлением воздуха, находя-Н1егося в кабине), пока не придут в соприкосновение с другими телами, после чего возникнут явления типа соударения.  [c.190]

При рассмотрении явлений невесомости и перегрузки мы не могли воспользоваться той системой отсчета, в которой эти явления могут быть наиболее наглядно 11СТолкованы, а именно системой отсчета, связанной с космическим кораблем (мы не огли это сделать потому, что еще не знаем, какие законы механики справедливы  [c.191]

Эти же причины (измеиение природы сил, действующих на корабль) вызывают появление и исчезновение состояния невесомости в космическом корабле. Мы уже рассматривали явление невесомости (в 43), не пользуясь при этом представлением о силах инерции. Это значит, что при рассмотрении состояния невесомости мы не пользовались [шрпусом космического корабля как системой отсчета (так как если бы мы пользовались этой системой отсчета, то неизбежно появились бы действующие в этой системе отсчета силы инерции, которые нам бы пришлось учитывать). Теперь, имея возможность пользоваться корпусом космического корабля как системой отсчета и учитывая силы инерции, мы в состоянии изложить вопросы о движении тел внутри и вблизи космического корабля, в частности, вопросы о возникновении и исчезновении невесомости и перегрузок, более четко, чем это можно было сделать раньше.  [c.355]


Можно считать, что как при подъеме, так и при спуске корабля он испытывает направленные кверху ускорения, величина которых в десяток и больше раз превосходит ускорение, которое под действием сил тяготения Земли испытывает корабль при движении по орбите спутн1п<а Земли. Но если корпус корабля получает под действием силы тяги реактивного двигателя или силы сопротивления воздуха ускорение порядка lOg, то в системе отсчета, связанной с космическим кораблем, возникает поле сил инерции с той же напряженностью, по обратное по знаку. Ясно, что при возникновении этих больп их сил инерции состояние невесомости нарушается и движение тел внутри космического корабля определяется практически только действием сил инерции.  [c.359]

Корабль вышел на орбиту — широкую космическую магистраль. Наступила невесомость... Сначала чувство это было необычным, но я вскоре привык к нему, освоился и продолжал выполнять программу... Все время я работал. Следил за оборудованием корабля, наблюдал через иллюмина-  [c.442]

Длительное пребывание в условиях невесомости и последующий (гпуск с орбиты по траектории снижения, характерный действием возраставших перегрузок, не отразились на здоровье космонавта. Не были зарегистрированы какие-либо вредные последствия космической радиации доза облучения, полученная Г. Титовым, определялась равной всего лишь 10 миллирадам (при допустимой дозе 15000 миллирад) На отдельных участках полета отмечались явления некоторого нарушения нормальных функций вестибулярного аппарата, по характеру своему несколько приближавшиеся к симптомокомплексу укачивания. Но эти явления почти полностью проходили, как только космонавт принимал исходное положение и не делал резких движений головой. Они значительно уменьшились после периода сна и совершенно прекратились с началом действия перегрузок при возвращении корабля на Землю [11].  [c.444]

Тогда же проведенные медико-биологические исследования показали, что длительное пребывание в космическом полете не повлекло сколько-нибудь заметных изменений в физиологическом и психологическом С(ЗСтоя-нии космонавтов и не снизило их работоспособности даже в периоды свободного парения в кабинах, когда Николаев, Попович и Быковский освобождались от подвесных систем и покидали кресла пилотов, проверяя влияние невесомости на координацию движений.  [c.446]


Смотреть страницы где упоминается термин Невесомость космическая : [c.502]    [c.240]    [c.240]    [c.242]    [c.269]    [c.191]    [c.444]    [c.440]    [c.474]    [c.114]   
Техника в ее историческом развитии (1982) -- [ c.434 , c.440 ]



ПОИСК



Невесомость



© 2025 Mash-xxl.info Реклама на сайте