Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Явная форма канонических уравнений

ЯВНАЯ ФОРМА КАНОНИЧЕСКИХ УРАВНЕНИЙ 507  [c.507]

Явная форма канонических уравнений  [c.507]

Общая параметрическая формулировка канонических уравнений в форме (6.10.15) с теоретической точки зрения обладает серьезными преимуществами по сравнению с другими формулировками. Ее можно считать наиболее выразительной формой канонических уравнений. Она совсем по-новому освещает роль консервативных систем. Заметим, что после преобразования времени t в одну из механических переменных любая система становится консервативной. Обобщенная функция Гамильтона К не зависит явно от независимой переменной т, и поэтому наша система в расширенном фазовом пространстве становится консервативной. Движение фазовой жидкости является установившимся, и каждая частица жидкости все время находится на какой-то определенной поверхности  [c.221]


Уравнения движения точки Р могут быть записаны в форме канонических уравнений Гамильтона. Функция Гамильтона явно от времени не зависит, поэтому существует обобщенный интеграл энергии — интеграл Якоби  [c.326]

Формулы (5.167) и (5.168) представляют собой общее решение канонических уравнений, содержащее шесть произвольных постоянных, в явной форме (сами уравнения мы не выписывали).  [c.333]

Из выражения, найденного Якоби для принципа наименьшего действия, видно, что если силовая функция и связи не зависят от времени, то и траектория определяется независимо от времени, что не очевидно в уравнениях Лагранжа, но ясно видно из рассмотрения канонических уравнений, которые показывают также, что если траектория известна, то время определяется квадратурой. В принципе наименьшего действия в форме Якоби рассматривается траектория изображающей точки, а не закон ее движения по этой траектории, так как время в этот принцип не входит ни в явном, ни в неявном виде. Поэтому из этого выражения принципа можно получить уравнения движения изображающей точки только введя какой-либо параметр.  [c.867]

Система уравнений (10), полученная путем канонического преобразования канонических уравнений абсолютного движения, представляет промежуточную запись между последними и уравнениями относительного движения (18), (19). В ней, благодаря внесению слагаемых 11 и ГР в выражение функции Гамильтона, учтены силы инерции потенциального характера, а остальные силы инерции явно не выделены что позволило сохранить гамильтонову форму этих уравнений.  [c.532]

Явное решение гамильтоновых уравнений в канонической форме в большинстве случаев может быть получено с помощью метода разделения переменных [183]. В этом случае задача интегрирования для п-сте-пенной гамильтоновой системы сводится к отысканию решения уравнения Гамильтона-Якоби в частных производных  [c.77]

Укажем явный вид преобразования, позволяющего привести канонические уравнения движения систем частиц, движущихся в подвижном газовом потоке, к гамильтоновой форме  [c.168]

Полученная таким образом система 12-го порядка обладает еще четырьмя интегралами, а именно, тремя интегралами площадей и интегралом живых сил. Поэтому, если использовать эти интегралы, можно получить систему 8-го порядка. Сохраняя каноническую форму дифференциальных уравнений, эту систему 8-го порядка можно записать как систему канонических уравнений с четырьмя степенями свободы. Оказывается, что характеристическая функция этой канонической системы остается не зависящей явно от времени. Следовательно, для этой системы 8-го порядка существует интеграл живых сил, и можно было бы с его помощью понизить порядок системы еще на единицу.  [c.225]


Удобнее поэтому не производить указанного исключения зависимых переменных в явном виде, а использовать каноническую форму уравнения (6.23)  [c.55]

Каноническую форму уравнений движения и теорему о характеристической функции он распространил на случай механических систем, связи которых явно зависят от времени.  [c.241]

Лемма 1. Если дифференциальные уравнения задачи трех тел имеют каноническую форму (10.2.01), то всякий алгебраический интеграл системы (10.2.01), не зависящий явно от t, имеет вид  [c.813]

В настоящем параграфе методом канонических преобразований получены основные уравнения задачи при достаточно общих предположениях. Цель нижеследующих преобразований состоит в том, чтобы явным образом выделить некоторые малые параметры задачи и получить уравнения в форме, удобной для дальнейших преобразований с помощью теории возмущений.  [c.270]

Укажем еще некоторые случаи непотенциальных систем, для которых удается в явном виде построить обобщенные функции Лагранжа L, Гамильтона Я и соответствующие функционалы, экстремизация которых приводит к уравнениям Лагранжа второго рода с равной нулю правой частью и каноническим уравнениям в гамильтоновой форме.  [c.159]

Задаем вид преобразования переменных, коэффициентами которого являются неизвестные функции, подлежащие определению. Затем, предполагая, что канонические уравнения движения непотенциальной системы в новых переменных имеют гамильтонову форму, находим обобщенный гамильтониан, зависящий от искомых функций. Эти функции определяем из системы дифференциальных уравнений, полученных при отождествлении канонических уравнений движения рассматриваемой непотенциальной системы и канонических уравнений движения, соответствующих построенной функции Гамильтона, после перехода в этих уравнениях к старым переменным. Таким образом находим явный вид преобразования, обобщенную функцию Гамильтона, которая позволяет привести канонические уравнения движения непотенциальной системы к гамильтоновой форме, и обобщенную функцию Лагранжа, которая дает возможность привести уравнения движения непотенциаль-  [c.159]

Задаем вид обобщенной функции Лагранжа (Гамильтона), зависящей от искомых функций, предполагая, что уравнения движения, определяемые обобщенной функцией Лагранжа, являются уравнениями Лагранжа второго рода с нулевой правой частью (канонические уравнения имеют гамильтонову форму). Отождествляя полученные уравнения и уравнения движения непотенциальиой системы, находим систему дифференциальных уравнений для определения неизвестных функций. Решая эту систему, находим искомые функции, а затем определяем явный вид обобщенных функций Лагранжа и Гамильтона и преобразования переменных.  [c.160]

При этом следует помнить, что р,- в функции Гамильтона Н заменены на dSldqi. Предположим, что мы можем найти производящую функцию S, удовлетворяющую этому уравнению в частных производных. Тогда мы сможем получить движение фазовой жидкости в виде последовательных фаз зависящего от времени канонического преобразования с заданной производящей функцией 5. После соответствую-щих дифференцирований и исключений это преобразование может быть найдено в явном виде. Уравнения преобразования записываются в такой форме  [c.256]

Описанный в предыдущем параграфе комплекс программ является универсальным в том смысле, что с ого помощью можно нормализовать гамильтониан канонической системы с произвольным числом степеней свободы. Однако такой комплекс нуждается в больших ресурсах ЭВМ, поэтому для решения конкретных механических задач важное значение имеет создание быстродействующих вычислительных алгоритмов, нормализующих гамильтоновы системы с небольшим числом степеней свободы. Большое количество задач связано с нормализацией автономных гамильтоновых систем с двумя и тремя степенями свободы (порядок системы дифференциальных уравнений равен 4 или 6), для которых знание коэффициентов нормальной формы до члено четвертого порядка включительно позволяет часто рехпить задачу об устойчивости положения равновесия. При этом знапие самого нормализующего преобразования (производящей функции) но является необходимым, а коэффициенты нормальной формы вычисляются через коэффициенты исходного гамильтониана с помощью явных и относительно простых формул. Соответствующие алгоритмы и основанные па них вычислительные программы разработаны и описаны в работах [173, 174].  [c.228]


Обище уравнения систем с неудерживаюищми связями. Приведенный выше прием сведения кинетической энергии к канонической форме дает принципиальное решение задачи составления регулярных уравнений движения систем с неудерживающими связями в самом общем случае. Однако он требует знания общего решения системы обыкновенных дифференциальных уравнений для разыскания замены переменных, что при решении конкретных задач может быть препятствием для построения искомых уравнений системы с неудерживающими связями в явном виде.  [c.150]

Касательные и, в частности, канонические преобразования позволяют снести описание физических систем к двум группам степеней свободы (2,17), (2.18) и уравнениям (2.3). Причина центра1н.ного места ка-поинческих преобразований в науке в том, что канонические преобразования приводят уравнения классической механики к такой форме, когда действие (то есть информация о системе) становится явной переменной.  [c.114]


Смотреть страницы где упоминается термин Явная форма канонических уравнений : [c.37]    [c.512]    [c.325]    [c.141]    [c.31]   
Смотреть главы в:

Аналитическая механика  -> Явная форма канонических уравнений



ПОИСК



Вид канонический

Каноническая форма

Канонические уравнения уравнения канонические

Уравнения канонические

Уравнения форме

Форма уравнением в форме

Явная форма



© 2025 Mash-xxl.info Реклама на сайте