Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы механики в относительном движении

Общие теоремы механики в относительном движении 141  [c.141]

Существенно развиты были вопросы динамики переменных масс в работах Ф. Р. Гантмахера, Л. М. Левина [2] и В. С. Новоселова [9], [10]. В этих работах изучались также системы с переменной массой, в которых учитывалось относительное движение частиц. В первой из упомянутых работ была высказана идея затвердевания системы, которая значительно упростила многие выкладки по динамике переменных масс, что особенно четко было показано в книге Л. Г. Лойцянского и А. И. Лурье [7]. В работах В. С. Новоселова значительно были развиты предыдущие исследования, опираясь на которые, он получил общие теоремы механики систем с учетом относительного движения частиц внутри системы.  [c.12]


Из сказанного ясно, что, пользуясь девятью направляющими косинусами как обобщенными координатами, нельзя получить лагранжиан и составить с его помощью уравнения движения. Для этой цели мы должны использовать не сами эти косинусы, а некоторую систему трех независимых функций этих косинусов. Некоторые такие системы независимых переменных, из которых наиболее важной является система углов Эйлера, будут описаны нами позже. Однако применение направляющих косинусов для описания связи между двумя декартовыми системами координат имеет ряд собственных важных преимуществ. Так, например, многие теоремы о движении твердых тел можно получить с их помощью весьма изящным и общим способом, притом в форме, встречающейся в специальной теории относительности и в квантовой механике. Поэтому этот метод заслуживает более подробного изложения.  [c.113]

Количеством движения массы, как известно из общей механики, называется произведение массы на скорость (количество движения есть векторная величина и имеет, как и всякий вектор, три составляющих). Согласно теореме о количестве движения изменение количества движения во времени, т. е. его производная по времени равна результирующей всех сил, приложенных к массе. Согласно теореме о моменте количества движения производная по времени от момента количества движения относительно какой-либо точки равна главному моменту относительно той же точки всех внешних сил, приложенных к массе. Применяя эти теоремы к системе материальных точек, необходимо иметь в виду ( 2 гл. I), что внутренние силы, действующие внутри механической системы, при суммировании по всем массам системы на основании закона о равенстве действия и противодействия взаимно уничтожаются и что остаются только силы, обусловленные массами, не принадлежащими к системе, т.е. внешние силы.  [c.113]

Построение общей теории движения тел переменной массы можно выполнить при помощи основных теорем механики теоремы об изменении количества движения, теоремы об изменении кинетического момента и теоремы об изменении кинетической энергии. Такой путь изучения движения тел переменной массы является наиболее простым и естественным. К формулировкам основных теорем механики для тел, масса которых изменяется с течением времени, можно идти различными путями. Мы будем следовать методу, широко применяемому в механике тел постоянной массы, рассматривая тело переменной массы как совокупность точек переменной массы, движение которых определяется уравнением Мещерского. Зная уравнения движения точки переменной массы и рассматривая тело как совокупность точек, можно получить простые формулы, выражающие основные теоремы динамики для тела переменной массы. Ограничимся в этой главе рассмотрением таких тел переменной массы, для которых излучение (отбрасывание) частиц происходит с некоторой части поверхности тела, причем частицы, не имеющие относительной скорости по отношению к системе осей координат, связанной с телом, считаются принадлежащими телу, а частицы, имеющие относительную скорость, телу не принадлежат и никакого влияния на его движение не оказывают. Реактивные силы и моменты понимаются во всем дальнейшем как результат контактного взаимодействия отбрасываемых частиц и тела в момент их отделения от основного тела.  [c.89]


Вместе с тем появились и существенные дополнения, среди которых следует отметить написанную К. А. Лурье новую (тридцать первую) главу, содержащую изложение основ специальной теории относительности. В заново написанных параграфах получили освещение вопросы полета ракеты простейшей схемы, теории колебаний систем с произвольным конечным числом степеней свободы, применения общих теорем динамики систем материальных точек к сплошным средам (теоремы Эйлера, Бернулли, Борда), а также к выводу общих дифференциальных уравнений динамики сплошных сред и выражения мощности внутренних сил в сплошной среде. Последнее в случае сред с внутренним трением позволяет глубже судить о важном для механики понятии потерь (диссипации) механической энергии при движении среды.  [c.7]

В своем трактате Общие принципы движения жидкостей (1755) Эйлер впервые вывел основную систему уравнений движения идеальной жидкости, положив этим начало аналитической механике сплошной среды. Гидродинамика обязана Эйлеру расширением понятия давления на случай движущейся жидкости. Стоит вспомнить слова Эйлера относительно того, что жидкость до достижения тела изменяет свое направление и скорость так, что, подходя к телу, протекает мимо него вдоль его поверхности и не прилагает к телу никакой другой силы, кроме давления, соответствующего отдельным точкам соприкосновения . В этих словах Эйлера, в противовес ньютонианским взглядам на ударную природу взаимодействия твердого тела с набегающей иа него жидкостью, выдвигается новое для того времени представление об обтекании тела жидкостью. Давление определяется не наклоном поверхности в данной точке к направлению набегающего потока, а движением жидкости вблизи этой точки поверхности. Эйлеру принадлежит первый вывод уравнения сплошности жидкости (в частном случае движения жидкости по трубе это уравнение в гидравлической трактовке было дано задолго до Эйлера в 1628 г. учеником Галилея Кастелли), своеобразная и ныне общепринятая формулировка теоремы об изменении количества движения применительно к жидким и газообразным средам, вывод турбинного уравнения, создание теории реактивного колеса Сег-нера и многое другое.  [c.20]

Мы уже многократно рассматривали как примеры для объяснения общих понятий и законов механики те движения, причиной которых считают силу тяжести, рассмотрим эти движения подробнее и вначале разъясним, как измеряется сила тяжести. Для этого нам послужит наблюдение колебаний тяжелого тела, которое способно вращаться вокруг горизонтальной оси. Такое приспособление называют маятником, а именно сложным маятником — в противоположность простому маятнику, о котором мы уже говорили. Допустим, что сила тяжести — постоянная ускоряющая сила. Рассмотрим маятник как твердое тело и пренебрежем влиянием воздуха, движением Земли и трением оси вращения тогда мы сможем очень легко вычислить движение такого маятника. Положение последнего в некоторый момент определено одной переменной выберем в качестве ее угол образованный плоскостью, проходящей через ось вращения и центр тяжести маятника, и вертикальной плоскостью, проходящей через ось вращения. Согласно 5 четвертой лекции, имеем теорему площадей относительно плоскости, перпендикулярной к оси вращения, так как связи точек маятника допускают вращение вокруг нее эта теорема дает дифференциальное уравнение для такого угла. Обозначим величину силы тяжести — g, массу маятника—т, расстояние от его центра тяжести до оси вращения—s, момент инерции маятника относительно этой оси — к, таким образом получим дифференциа ное уравнение  [c.69]

Леви-Чивита (Ьеи1 СгиНа) Туллио (1873-1941) — известный итальянский математик и механик. Окончил Падуанский университет, профессор рациональной механики этого университета 1898-1938 гг.). Основные направления исследований теория чисел, тензорный анализ, риманова геометрия, аналитическая и небесная механика, гидромеханика, теория упругости. Основополагающие работы в области абсолютного дифференциального исчисления. Совместная с Г. Риччи-Курбастро монография Методы абсолютного дифференциального исчисления и их приложения сделала, по словам А. Эйнштейна, возможной математическую формализацию общей теории относительности. Ему принадлежит идея параллельного переноса векторов, идея искривленного пространства, теорема об аналитических функциях комплексного переменного, фундаментальные работы по теории потенциала, по теории поверхностных волн от движения твердого тела, по теории трехмерного пограничного слоя.  [c.56]



Смотреть страницы где упоминается термин Общие теоремы механики в относительном движении : [c.145]    [c.224]    [c.239]    [c.239]    [c.6]    [c.416]    [c.8]    [c.371]   
Смотреть главы в:

Курс лекций по теоретической механике  -> Общие теоремы механики в относительном движении



ПОИСК



Движение относительное

Механика общая

Механика относительного движения

Общие теоремы

Относительность движения

Теорема движения



© 2025 Mash-xxl.info Реклама на сайте