Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Собственное значение в условиях на бесконечности (s-метод)

Задачу собственных значений уравнения Зоммерфельда—Орра с граничными условиями на бесконечности (вдали от а = а , Х=о, = j можно исследовать с помощью ряда Тейлора. Представляется возможным расширить этот метод на непараллельный стационарный поток.  [c.113]

В методе, изложенном в 13, собственные значения вводятся через условия для собственных функций на бесконечности. Этот метод удобен для решения задач дифракции с потерями только на излучение.  [c.14]


Излагаемый ниже дискретный аппарат отличается от применяемого в теории рассеяния метода Штурма характером вспомогательной задачи (собственные функции удовлетворяют правильным условиям на бесконечности, собственное значение не является постоянной связи) и тем, что в ряд разлагается не все решение. Именно это и позволяет при рассеянии на квазистационарном уровне получить явные выражения для полей и диаграмм рассеяния и указать эффективный вычислительный аппарат при любой форме барьера.  [c.67]

Общим во всех вариантах обобщенного метода, излагаемых в этой главе, является введение собственных значений в граничные условия однородных задач, а не в уравнения (как это имело место в й- и е-методах). Для этого на поверхности вспомогательного тела, имеющего ту же форму, что и в исходной задаче, вместо истинных граничных условий задачи дифракции ставятся какие-либо вспомогательные условия, содержащие параметр, играющий роль собственного значения. Например, в ш-методе ( 9) на границе тела ставится условие импедансного типа, и собственными значениями соответствующей однородной задачи являются те значения импеданса вспомогательного тела, при которых существуют нетривиальные решения на заданной частоте. Во всех методах этой главы каждая собственная функция обязана удовлетворять тому же уравнению, что и дифрагированное поле (т. е. однородному уравнению с истинной частотой), и тем же условиям на бесконечности (кроме варианта, изложенного в 13). Поэтому представление искомого поля в виде разложения (5.5) удовлетворяет почленно уравнению задачи дифракции и условиям излучения (если таковые накладываются) при любых коэффициентах Л . Эти коэффициенты определяются нз оставшегося условия, состоящего в том, чтобы искомое поле удовлетворяло истинным граничным условиям. При этом используются имеющие здесь место соотношения ортогональности.  [c.85]

Мы рассмотрим здесь два дополняющих друг друга варианта обобщенного метода, позволяющих строить решения задач дифракции на замкнутых и незамкнутых металлических поверхностях в 11 эти методы будут применены к задачам дифракции на диэлектрических телах. Их отличие от ау-метода состоит, в частности, в том, что во вспомогательной однородной задаче на поверхности рассматриваемого тела ставятся граничные условия, имеющие смысл условий сопряжения-, в применении к задачам о телах с замкнутыми границами это означает установление связи между внутренним и внешним объемами, а для гел с незамкнутыми границами (бесконечно тонкие экраны)—связи между полями на разных сторонах экрана. Эти условия могут трактоваться как описывающие границу тела в виде полупрозрачной пленки, в то время как применяемые в ау-методе импедансные граничные условия означают полную изоляцию (экранировку) рассматриваемой области от остального объема, т. е. описывают непрозрачную пленку, повторяющую форму тела. Таким образом, вспомогательная однородная задача р-метода ставится для всего пространства (в случае замкнутых границ одновременно для внутренней и внешней областей). Поэтому ее собственные элементы позволяют строить решения как внутренней, так и внешней задач дифракции, а собственные значения, как функции частоты, содержат информацию о резонансах обеих задач.  [c.97]


Собственное значение в условиях на бесконечности (5-метод) )  [c.125]

Стационарные функционалы релеевского типа для собственных частот в задачах о замкнутой области подробно рассмотрены, например, в [7], там приведено также несколько примеров того, как сделать какие-либо граничные условия естественными. Общий метод неопределенных коэффициентов для построения функционалов, для которых заданные граничные условия являются естественными ( 16), ранее не применялся. Вариационный аппарат не применялся, по-видимому, для вычисления других собственных значений электродинамических задач. При построении стационарных функционалов в бесконечной области существенным является вещественность к.  [c.282]

Поскольку описанное явление существенного уменьшения значения собственной частоты связано с наличием податливых стенок во внутреннем объеме, заполненном жидкостью, то можно указать еще на Один метод снижения резонансной частоты пульсирующей бесконечной цилиндрической оболочки. Рассмотрим оболочку 1, внутри которой соосно с ней размещен акустически жесткий цилиндр <3, а в зазор между оболочкой и этим цилиндром вставлены акустически мягкие кольцевые перегородки 2, периодически повторяющиеся вдоль оси г (рис 43). Учитывая указанное, достаточно ограничиться изучением только одного периода ] г ] Л и принять следующие граничные условия  [c.93]

Внутренняя задача о распространении гармонической волны имеет единственное решение, если со не является одним из собственных значений системы. Существуют, однако, родственные трудности в случае соответствующей внешней граничной задачи, что выражено уравнением (10.77), хотя оно, конечно, удовлетворяет обычным условиям регулярности, а также условиям излучения на бесконечности. Имеется бесконечная последовательность значений со, совпадающих с соответствующими резонансными волновыми числами или собственными значениями соответствующей внутренней задачи, при которых это уравнение имеет множество решений. Поэтому решение внешних задач Дирихле или Неймана не будет иметь успеха при волновых числах, отвечающих собственным значениям внутренних задач Неймана и Дирихле соответственно. Это не физическая трудность, присущая внешней задаче, так как для йнешних задач не существует собственных значений трудность неединственности полностью обусловлена формулировкой задачи через граничные интегралы. Подробное обсуждение возникающих здесь трудностей можно найти в работах [5, 10, 21, 23, 24, 55—57], где для преодоления этих трудностей предложены модификации как прямого, так и непрямого методов.  [c.299]

Излагаемый в этом параграфе вариант метода применйм при решении задач дифракции в открытых системах. В нем вспомогательная однородная задача оказывается вещественной и может быть сведена к вещественному интегральному уравнению, если в задаче дифракции присутствуют только потери на излучение. Это связано со следующей закономерностью, уже обсуждавшейся для закрытых задач. А именно, при наличии потерь только одного типа соответствующую вспомогательную задачу всегда можно сделать вещественной, если вводить собственное значение именно в той области, где эти потери присутствуют, точнее, если вводить собственное значение через параметр задачи дифракции, ответственный за эти потери. В рассматриваемом варианте собственное значение однородной задачи (которая соответствует задаче дифракции с потерями только на излучение) мы введем через условия для собственной функции на бесконечности. Физический смысл этих условий состоит в том, что существует как сходящаяся из бесконечности собственная волна, так и рассеянная телом собственная волна. Угловые зависимости сходящейся и расходящейся волн, определяемые формой и свойствами облучаемого тела, должны совпадать (с точностью до комплексного сопряжения). В качестве собственных значений принимаются отношения амплитуд рассеянных и приходящих  [c.125]

Данное трансцендентное уравнение является уравнением устойчивости упругой системы по МГЭ. Корни уравнения устойчивости определяют спектр критических сил, число которых (теоретически) бесконечно. Чтобы не пропустить первой критической силы, нужно начинать анализ поведения определителя (4.6) с достаточно малых значений сжимающих сил Г. Рекомендуется начальное значение Г выбирать из интервала (1/100 - 1/1000)Гть, где Гщь - минимальная критическая сила стержней основной системы метода перемещений. Шаг изменения сжимающей силы рекомендуется выбирать равным (1/100 - 1/1000) интервала, на котором выполняется поиск критических сил. Изменение знака определителя (4.6) или равенство его нулю свидетельствует о прохождении критической силы. Таким образом, методика определения критических сил не отличается от методики определения частот собственных колебаний упругих систем. Здесь можно использовать программы на языках ГоЛгап и Разса1 примеров №13, №14 с соответствующим изменением обозначений переменных. В рамках принятых допущений МГЭ позволяет определять точный спектр собственных значений (частот или критических сил). Однако, линеаризация дифференциальных уравнений и краевых условий, неучет деформаций  [c.122]


Струн поперечные колебания 74, 75, 77, 134, 193 бесконечно большая нагрузка 134 возбуждение импульсом 211 возбуждение щипком 210 вынужденные колебания 215 графический метод 250, 252 жесткость 229, 262 закрепленные концы 202 Зеебека наблюдения 206 значения Т я V 201 конечная нагрузка 227 меняющаяся линейная плотность 138, 237, 257 нагрузка в виде двух масс 186 нагрузка, сосредоточенная в отдельных точках 195 начальные условия 210 несовершенная гибкость 262 обще-дифференииальное уравнение 200 отражение в закрепленной точке 251 отражение в точке соединения 256 периодическая сила, приложенная в одной точке 218 податливость концов 222 скрипичная струна 230 собственные частоты 206, соединенные струны 256, 262 узлы при приложении силы 256, фор1епиапная сгруна 212  [c.502]

Сводка результатов. — Мы разбирали ряд деталей, изучая колебание струны может быть больше деталей, чем это казалось необходимым. Это было сделано потому, что струна является наиболее простым случаем системы с бесконечным числом собственных частот и легче изучать некоторые свойства, общие для нескольких систем на самой простой системе, чтобы математические выкладки не затемняли физического смысла. Действие трения, как на самую систему, так и через её опоры, и явление многократного резонанса также справедливы и для систем, более сложных, чем струна. Действие затухания, вызванного реакцией воздуха в системах более протяжённых, чем струна, имеет большее значение, но общий характер явлений будет такой же, как и в разобранном нами ьыше случае струны. Мы также разобрали ряд методов изучения проблемы колебаний, применяя их к задачам, в которых метод не слишком затемнён деталями. Эти методы будут очень полезны в дальнейшей работе. В частности, мы давали ряд примеров полезности изучения нормальных мод колебания системы. Раз вопрос о нормальных частотах и соответствующих фундаментальных функциях был разобран для системы с данным рядом граничных условий, мы можем определить движение системы для какого угодно ряда начальных условий и для любого вида действующей силы. Мы можем также обсуждать методом, подобным тому, который изложен в 12, влияние на форму колебаний небольших изменений параметров системы (например, некоторой неравномерности в распределении массы или натяжения). Выражая приложенную силу через фундаментальные функции, мы можем получить выражение для вынужденных колебаний. Мы можем показать, например, что когда частота силы, приводящей в движение систему, равна одной из допустимых частот, тогда система Принимает форму, определяемую соответствующей фундаментальной функцией, с амплитудой, равной бесконечности, если нет затухания вследствие трения (сравнить это с изложенным в последнем параграфе главы П).  [c.169]


Смотреть страницы где упоминается термин Собственное значение в условиях на бесконечности (s-метод) : [c.208]    [c.141]    [c.134]   
Смотреть главы в:

Обобщенный метод собственных колебаний в теории дифракции Спектральные свойства дифракции  -> Собственное значение в условиях на бесконечности (s-метод)



ПОИСК



Собственное значение значение

Собственные значения

Условия на бесконечности



© 2025 Mash-xxl.info Реклама на сайте