Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механическое движение. Равновесие

ОСНОВНЫЕ ПОНЯТИЯ и ОПРЕДЕЛЕНИЯ СТАТИКИ 1. Механическое движение. Равновесие  [c.5]

ГЛАВА I. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ СТАТИКИ Ь Механическое движение. Равновесие  [c.5]

Материя и движение. Механическое движение. Равновесие  [c.7]

В классической механике такими абстракциями или моделями являются по существу все вводимые исходные положения и понятия. Они учитывают то основное, определяющее, что существенно для рассматриваемого механического движения и позволяет его строго охарактеризовать и изучить. Так, например, вместо реальных материальных тел в механике рассматривают такие их абстрактные модели, как материальная точка, абсолютно твердое тело или сплошная изменяемая среда, абстрагируясь от учета в первом случае формы и размеров тела, во втором— го деформаций, в третьем — молекулярной структуры среды. Но только построив механику такого рода моделей, можно разработать методы, позволяющие изучать с пригодной для практики точностью равновесие и движение реальных объектов, проверяя в свою очередь эту пригодность опытом, практикой.  [c.6]


Изучением самой простой формы движения материального мира, изучением перемещения тел относительно друг друга и во взаимодействии друг с другом и занимается теоретическая механика. Перемещение тела относительно другого тела или, иначе говоря, изменение положения одного тела по отношению к другому называется механическим движением. Обычно теоретическая механика разделяется на три части статику, кинематику и динамику. Статика — раздел теоретической механики, занимающийся изучением сил и условий их равновесия. Кинематика занимается изучением механического движения без учета действия сил. Динамика изучает законы механического движения в отношении их причин и следствий.  [c.5]

В статике изучались задачи о приведении систем сил к простейшему виду и относительном равновесии материальных тел, в кинематике рассматривались задачи о геометрических характеристиках механического движения. В динамике — главном разделе курса — на основе сведений из статики и кинематики и специальных законов динамики решаются задачи о связи сил и движений.  [c.9]

Теоретическая механика делится на три части — статику, кинематику и динамику. Статика — раздел теоретической механики, который изучает законы для сил при равновесии материальных (особенно твердых) тел, а также преобразования систем сил, приложенных к твердому телу. Кинематика изучает чисто геометрические формы механических движений материальных объектов без учета условий и причин, вызывающих и изменяющих эти движения. В дина м и к е изучается движение материальных объектов в зависимости от сил, т. е. от действия на рассматриваемые материальные объекты других материальных объектов.  [c.5]

Теоретическая механика относится к разряду естественных наук. Она изучает общие законы механического движения и равновесия мате-  [c.5]

Так как выбор системы отсчета в известной мере произволен и зависит от характера рассматриваемой задачи, то понятия о механическом движении и покое являются по существу относительными, и материальный объект, движущийся по отношению к одной системе отсчета, может находиться в покое по отношению к другой системе отсчета. Поэтому при изучении механического движения всегда нужно знать ту систему отсчета, по отношению к которой будет изучаться данное движение. Если такая система отсчета не задана, то задача изучения механического движения становится в механике неопределенной. Любое механическое движение (и равновесие) имеет объективный характер, и относительность механического движения не означает, что оно субъективно.  [c.7]


Всякое реальное тело природы вследствие взаимодействия с другими материальными объектами, будет ли оно оставаться в покое или приходить в определенное движение, изменяет свою форму (деформируется). При этом величины этих деформаций зависят от материала тела, его геометрической формы и размеров, а также от действующих на тело сил. Учет этих деформаций имеет существенное значение при расчете прочности частей (деталей) различных инженерных сооружений или машин . При этом для обеспечения необходимой прочности той или иной конструкции материал и размеры ее частей подбирают так, чтобы деформации при действующих силах были достаточно малы. Поэтому при изучении общих законов механического движения и общих условий равновесия твердых тел можно пренебрегать малыми деформациями этих тел и рассматривать их как недеформируемые, или абсолютно твердые. Абсолютно твердым телом называют такое тело, расстояние между двумя любыми точками которого всегда остается неизменным. В дальнейшем при изучении теоретической механики будем рассматривать все тела как абсолютно твердые.  [c.8]

Великий ученый и философ древности Аристотель (384—322 гг. до н. э.) изложил в своих сочинениях учение о равновесии рычага и других простейших машин, общее учение о движении и силах и первый ввел в науку термин механика . Метод Аристотеля существенно отличается от современного метода точных наук и носит метафизический характер. Аристотель стремился выяснить причины явлений природы, исходя из общих аксиоматических положений, не прибегая к наблюдению и опыту, и поэтому иногда приходил к результатам, не подтверждающимся действительностью. Так, например, Аристотель считал, что скорости тел, падающих в пустоте, пропорциональны их весам. Он также считал, что для поддержания прямолинейного и равномерного движения тела необходимо действие постоянной силы. Эти и некоторые другие ошибочные представления Аристотеля о механическом движении держались в науке свыше полутора тысяч лет.  [c.13]

Средневековый период развития механики заканчивается работами гениального итальянского ученого Галилео Галилея (1564—1642), исследования которого открыли новую эпоху в развитии механики. Исследования Галилея изложены в его сочинении Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящиеся к механике и местному времени . Галилей был зачинателем современной динамики. Он открыл закон инерции и закон независимости действия сил от состояния тела. Им была создана теория параболического движения снаряда. Галилей доказал много весьма важных свойств равноускоренных и равнозамедленных движений. До Галилея силы, действующие на тело, рассматривали только в состоянии равновесия и измеряли действие сил только статическими методами. Галилей установил динамический метод сравнения действия сил. Он является творцом новой отрасли механики — учения о сопротивлении материалов. Галилей полностью опроверг неверные представления Аристотеля о механическом движении.  [c.14]

Механическим движением называется изменение с течением времени положения материальных тел относительно друг друга. Поскольку состояние равновесия есть частный случай движения, то в задачу теоретической механики входит также изучение равновесия материальных тел.  [c.13]

Механическое движение. Предмет теоретической механики— механическое движение и равновесие материальных тел. Механическое движение есть перемещение тел относительно друг друга, оно является простейшей формой движения среди многообразия форм движения материального мира.  [c.142]

Изучение механики начинается с раздела, называемого кинематикой. В нем рассматривается движение тел пли их частей в зависимости от времени, т. е. изучается движение независимо от взаимодействия с другими телами. Основной раздел механики — динамика — изучает причины, вызывающие изменения движения, и устанавливает законы механического движения. Условия равновесия тел изучаются в разделе, называемом статикой. Статику можно рассматривать и как частный случай динамики, так как все законы статики могут быть получены из законов динамики.  [c.6]


Свойство энтропии возрастать в необратимых процессах, да и сама необратимость находятся в противоречии с обратимостью всех механических движений и поэтому физический смысл энтропии не столь очевиден, как, например, физический смысл внутренней энергии. Максимальное значение энтропии замкнутой системы достигается тогда, когда система приходит в состояние термодинамического равновесия. Такая количественная формулировка второго закона термодинамики дана Клаузиусом, а ее молекулярно-кинетическое истолкование Больцманом, который ввел в теорию теплоты статистические представления, основанные на том, что необратимость тепловых процессов имеет вероятностный характер.  [c.76]

Устойчивое равновесие термодинамической системы характеризуется тем, что по устранении причины. Вызвавшей отклонение системы от состояния равновесия, система сама по себе возвращается в первоначальное равновесное состояние. При этом за время, в течение которого устанавливается термодинамическое равновесие (это время называется временем релаксации), в системе происходят различные неравновесные, а следовательно, и необратимые процессы, заключающиеся в затухании механических движений, выравнивании плотностей и температур и т.[д. Чтобы вывести систему из состояния устойчивого равновесия, необходимо совершить над системой (т. е. затратить извне) некоторую работу.  [c.109]

Пусть система (например, какой-либо газ) не находится в термодинамическом равновесии с окружающей средой. В некоторый момент времени полностью изолируем систему от внешней среды. Как известно, под действием внутренних процессов такая система через тот или иной промежуток времени неизбежно придет в состояние равновесия — произойдет затухание механических движений, выравнивание температур, плотностей и т. щ Все процессы, приводящие систему в равновесное состояние, являются необратимыми, и тем самым протекание их обусловливает увеличение энтропии системы. Следовательно, переход системы из неравновесного, а значит в термодинамическом смысле неустойчивого, состояния в равновесное устойчивое состояние сопровождается ростом энтропии. Таким образом, в состоянии устойчивого равновесия энтропия системы имеет наибольшее значение.  [c.122]

Вариационные принципы механики неразрывно связаны с теорией групп преобразований, синтезом аналитического и геометрического аспектов механики, оптико-механической аналогией и единой волново-корпускулярной картиной движений, классической и квантовой теорией физических полей, вариационными методами решения задач движения, равновесия, устойчивости и структуры физических систем и другими фундаментальными проблемами.  [c.780]

Как уже было указано в 2, статическое действие нагрузок имеет место, когда при передаче давления от одной части конструкции на другую или при действии объемных сил механическое движение этих частей не меняется с течением времени. В этом случае каждый элемент конструкции находится в равновесии под действием внешних нагрузок и напряжений.  [c.488]

Изложенную постановку задачи об устойчивости стационарных движений можно применять также для систем, содержащих упругие звенья. Постановка и метод решения задачи об устойчивости стационарных движений (равновесий) упругого тела с полостью, содержащей жидкость, даны в работе [26 . Приложения этой теории для ряда механических систем с упругими и жидкими элементами можно найти в работах [14, 16, 22, 23].  [c.300]

Механические системы, как правило, обладают нелинейными свойствами. В прикладных расчетах, полагая отклонения от невозмущенного движения (равновесия) достаточно малыми, вкладом нелинейных факторов обычно пренебрегают, что сильно упрощает как аналитические выкладки, так и численные расчеты. Принцип суперпозиции, справедливый для линейных систем, позволяет анализировать раздельно влияние разных факторов и оценивать их результирующий эффект путем сложения частных решений. Этот путь кажется естественным и при анализе устойчивости, тем более что при этом анализе возмущения, как правило, малы по определению. Отбрасывание нелинейных членов (при условии их аналитичности в окрестности невозмущенного движения) представляется интуитивно оправданным. Однако строгай анализ показывает, что это можно делать далеко не всегда. Ответ на вопрос о том, при каких условиях допустимо линеаризировать уравнения возмущенного движения, дает теорема Ляпунова об устойчивости по первому приближению.  [c.459]

Рассмотрением вращательных движений и условий равновесия тел полностью заканчивается изучение механики твердого тела. Из основных данных опыта было получено определение самого механического движения, найдены условия, при которых могут возникать или изменяться движения тел. Найдены физические величины, которые позволяют определить состояние движения любого тела, а также величины, которые характеризуют взаимодействия тел, вызывающие движения, и, наконец, сформулированы фундаментальные законы динамики, которые дают возможность решать любые задачи о механических движениях тел.  [c.283]

Итак, для термодинамических систем имеет место принцип макроскопической необратимости, который можно сформулировать сле-дуюш,им образом. Всякая термодинамическая система, замкнутая неподвижными механическими системами в ограниченной области пространства, с течением времени рано или поздно сама собой переходит в некоторое предельное состояние, в котором она затем остается неопределенно долго. В предельном состоянии (или состоянии равновесия) нет никаких видимых изменений, в частности нет механического движения. Состояние равновесия однозначно определяется значениями внешних механических параметров и энергией системы.  [c.25]


Каждая часть сама по себе находится в равновесии и имеет, следовательно, свою температуру и свою энтропию. Однако между частями равновесия нет, поэтому их температуры различны. Если создать между (Хх) и (Х2) тепловой контакт и заставить меняться механические параметры, то равновесие в каждой из систем нарушится и начнется более или менее бурный процесс, в течение которого в системе могут возникнуть механические движения и другие изменения. Затем остановим изменения всех механических параметров. Через некоторое время установится равновесие, в котором температуры обеих систем (Их) и (И2) будут равны. Что случится с энтропией в результате этого процесса Теперь она определена и в начальном (неравновесном), и в конечном (равновесном) состояниях. Можно ли утверждать, что она увеличилась  [c.90]

Пусть теперь система (Е) переходит каким угодно образом из состояния неполного равновесия (1) в состояние (2), причем так, что ее механические параметры в конце процесса возвращаются к своим прежним значениям. Поскольку в течение процесса механические параметры меняются, среда также совершает работу, не выходя при этом заметным образом из равновесия. В результате процесса получится механическое движение, измеряемое суммой работ системы (Е) и среды (Ё) над механической системой (М)  [c.117]

Откуда такая близость численных значений критериев подобия и их приближенное постоянство для объектов столь разных масштабов — маятника и звезды Все дело в физической общности явлений, приводящих к малым пульсациям звезд и малым колебаниям маятника. И в том и в другом случае сущность явлений одна и та же — механическое движение в поле тяжести, соответствующее небольшим отклонениям от положения равновесия.  [c.48]

Теоретическая механика делится на три тесно связанных раздела статику, кинематику й динамику. Каждый раздел освещает определенную качественную сторону механического движения статика — равновесие твердых тел под действием сил кинематика — геометрию механического движения динамика — законы движения тел под действием сил.  [c.5]

Теоретическая механика есть наука об общих законах механического движения и равновесия материальных тел.  [c.11]

Так как состояние равновесия тела есть частный случай механического движения, то в задачу теоретической механики входит также изучение равновесия материальных тел. Но необходимо иметь в виду, что абсолютного равновесия в природе не существует и что всякое равновесие лишь относительно и временно (Энгельс, Диалектика природы, 1953, стр. 196).  [c.12]

Теоретическая механика делится на три части статику, кинематику и динамику. Статика — раздел теоретической механики, в котором рассматривают свойслва сил, приложенных к точкам твердого гела, и условия их равновесия. В кинематике изучают чисто геометрические формы механических движений материальных объектов без учега условий и причин, вызывающих и изменяющих эти движения. В динамике изучаются механические движения материальных объектов в зависимости от сил, г. е. от действия на рассматриваемые объекты других материальных объекюв.  [c.7]

Пространственно неоднородными называют такие состояния, в которых значения одного или нескольких интенсивных макроскопических величин не одинаковы в разных частях системы. Мы не будем касаться состояний с неодинаковым давлением. Потому что в этом слз чае между различными частями системы действуют обычные механические силы, и на необратимый процесс установления термодинамического равновесия накладьгааются более или менее обычные механические движения, вовсе для него не обязательные. При однородном же давлении могут быть неодинаковыми, например, температура, состав частиц (для систем, состоящих из частиц нескольких сортов) или скорость их макроскопического движения.  [c.187]

Применение метода абстракции, обобщение результатов опыта и непосредственных наблюдений позволили теоретйческой механике установить основные ее законы, или аксиомы. Из этих аксиом, соединенных с методами математического анализа, теоретическая механика получает все дальнейшие выводы о механическом движении и равновесии материальной точки, абсолютно твердого тела и механической системы. Достоверность теоретической механики зависит, таким образом, от достоверности ее аксиоматики, на которой она покоится, так как математические выводы из этой аксиоматики внести ошибок не могут. При этом не следует забывать, что аксиомы теоретической механики так же, как и ее основные понятия, имеют опытное происхождение.  [c.10]

I. Предмет теоретической механики. Теоретичесиая механика есть наука о простейшей форме движения материи, наука об общих законах механического движения и равновесия материальных тел или их частей.  [c.13]

Условия и закономерности равновесия жидкостей и газов иод действием приложенных к ним сил изучаются в разделе механики, называемом гидроаэростатикой. Законы механического движения жидкостей и газов изучаются в разделе, называемом гидроаэродинамикой. Движение жидкостей и газов называют течением, а сово-куиность частиц движущейся жидкости или газа — потоком.  [c.130]

Таким образом, с механической точки зрения движение системы молекул является квазипериодическим, и ничего похожего на- стремление к равновесию здесь нет находится или не находится система в равновесии — не играет никакой роли. С другой стороны, термодинамика утверждает, что изолированная неравновесная система должна монотонно приближаться к равновесию. Возникает, казалось бы, противоречие между обратимостью механических движений молекул системы и необратимостью макроскопических процессов в ней. Однако это противоречие лишц кажуп1ееся, и его устранили Больцман, а затем Гиббс, указывая на различный уровень описания состояния системы многих частиц механикой и термодинамикой.  [c.125]

Вероятностное поведение макроскопических систем , состоящих из громадного числа механически движущихся частиц, является характерной особенностью теплового движения, качественно отличающей его от классического механического движения с присущей ему однозначностью. Наличие огромного числа частиц в термодинамических системах обусловливает второстепенность механических закономерностей движения отдельных частиц и возникновение закономерностей их совокупного, массово] о движения. Принимая основной (первый) постулат, термодинамика таким образом ограничивает себя, исключая из рассмотрения системы, для которых равновесное состояние невозможно (процессы в таких системах не завершаются наступлением равновесия), а также все  [c.17]

Теоретическая механика делится на кинематику и кинетику. В кинематике изучаются геометрические свойства механического движения материальных тел без учета их масс и вызывающих эти движения сил. В кинетике изучаются движение и равновесие материальных тел в зависимостц от действующих на эти тела сил.  [c.11]

Принцип возможных перемещений, положенный Лагранжем в основу механики, оказался одним из наиболее общих и плодотворных методов исследования механического движения и равновесия материальных тел, однако механика, являющаяся наукой о природе, не стала отраслью математичесгсого анализа. Задачи, относящиеся к теории упругости, теории пластичности, гидро-и аэромеханике, т. е. к механике деформируемых тел, в большом числе случаев получают ясное решение, если из необходимых уравнений классической механики твердого тела взять те, которые получаются методом возможных перемещений. И вообще, мне кажется, можно сказать наперед, что все общие принципы, которые еще могли бы быть открыты в учении о равновесии, представили бы собой не что иное, как тот же самый принцип возможных перемещений, рассматриваемый с иной точки зрения и отличающийся от принципа возможных перемещений лишь по своей формулировке .  [c.67]


Во время самого процесса механическое движение может сколько угодно усиливаться за счет скрытого движения. Можно, например, в исходном равновесии уменьшить силы, удерживаюш,ие ограничиваю ш,ие систему механические тела. Тогда термическая система сама приведет их в движение. Но в конце процесса, когда все механические тела станут на прежние места и все изменения внутри термической системы прекратятся, механическое движение вне термической систе мы окажется менее интенсивным, чем оно было вначале.  [c.43]

Гидравлика — наука, изучающая законы равновесия и механического движения жидкостей и разрабатывающая методы применения этих законов для решения различных прикладных задач. Название гидравлика произошло от греческих слов хюдор — вода и аулос — труба, желоб. Вначале в понятие гидравлика включалось только учение о движении воды по трубам. В настоящее время почти во всех областях техники применяются различные гидравлические устройства, основанные на использовании гидравлических законов. Главнейшие области применения гидравлики — гидротехника, мелиорация и водное хозяйство, гидроэнергетика, водоснабжение и канализация, водный транспорт, машиностроение, авиация и т. д.  [c.5]


Смотреть страницы где упоминается термин Механическое движение. Равновесие : [c.114]    [c.11]    [c.53]    [c.66]   
Смотреть главы в:

Основы технической механики Издание 2  -> Механическое движение. Равновесие



ПОИСК



Движение механическое

Материя и движение. Механическое движение. Равновесие — Материальная точка. Абсолютно твердые и деформируемые тела

Равновесие механическое



© 2025 Mash-xxl.info Реклама на сайте