Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластическая деформация металлов двойникованием

Пластическая деформация металла — это последовательное массовое перемещение атомов по определенным плоскостям и направлениям кристаллической решетки. Перемещение происходит в результате скольжения или двойникования атомных слоев металла по  [c.80]

Двойникование может вносить существенный вклад в общую пластическую деформацию металла. Оценка  [c.147]

Основным механизмом пластической деформации металлов и сплавов является сдвиговое перемещение частей кристалла (зерна) относительно друг друга по плоскостям скольжения (двойникования), которое происходит благодаря движению под действием приложенных напряжений линейных дефектов кристаллической решетки — дислокаций [4, 8, 10, 11].  [c.6]


Характерное для ОЦК-металлов повышение предела текучести в области низких температур приводит во многих случаях к включению дополнительного механизма пластической деформации — механического двойникования [5, 17, 111]. Обязательным условием начала двойникования является, как известно [111, 22], наличие определенного уровня концентраций напряжений. Такие концентрации напряжений возникают под нагрузкой на отдельных элементах структуры материала (включения, стыки трех зерен и т. д.) или могут быть обусловлены геометрической формой испытываемых образцов (галтели). Кроме того, концентрации напряжений могут возникать у вершин плоских скоплений возле границ зерен [26, 103].  [c.56]

Пластическая деформация металла происходит по одному из двух вариантов — либо скольжением одного слоя атомов по другому, либо двойникованием. При этом, в отличие от упругой деформации, атомы под влиянием внешних сил переходят из одной позиции устойчивого равновесия в другую.  [c.238]

Пластическая деформация металлов в холодном состоянии происходит за счет сдвига по плоскостям скольжения отдельных частиц кристаллов друг относительно друга или вследствие поворота одной части кристаллической решетки в положение, симметричное другой ее части (двойникование). При сдвиге отдельных частей металла по поверхности скольжения образуется слой с искаженной кристаллической решеткой и мелкими осколками зерен, создающими шероховатость по поверхности сдвига, которая препятствует дальнейшему перемещению зерен. Таким образом, пластическое деформирование в холодном состоянии упрочняет металл. Это упрочнение называется наклепом. Результат упрочнения выражается в том, что предел прочности и твердость металла повышаются, а пластичность снижается.  [c.402]

Двойникование. Кроме скольжений, при пластической деформации происходит двойникование, заключающееся в сдвиге части данного зерна металла в другое положение, симметричное оставшейся части, Относительно плоскости двойникования. Модель процесса двойникования может быть представлена в виде колоды карт, которая перекашивается в одну сторону (фиг. 37, а). Затем верхнюю часть колоды перекашивают в обратную сторону на  [c.56]

Для решения проблемы пластичности кристаллов принципиально важен анализ их сдвиговой устойчивости. Долгое время оя. ограничивался рассмотрением влияния сдвиговой устойчивости решетки на характеристики дислокаций (энергию дефекта упаковки, степень расщепленности дислокаций), характер их движения, формирование дислокационной структуры, переход от дислокационного механизма деформации к двойникованию, формированию мартен-ситных ламелей. Указанные аспекты играют фундаментальную роль в дислокационной теории пластической деформации металлов и сплавов.  [c.6]


При деформации двойникованием перемещение частей зерен друг относительно друга под действием касательных напряжений сопровождается изменением ориентировки кристаллической решетки. Смещенная часть становится как бы зеркальным отражением неподвижной части кристалла (рис. 37, д). Двойникование наблюдается реже, чем скольжение, в частности, оно происходит в случае деформации при повышенных температурах, ударном действии нагрузок и при деформации металлов, имеющих гексагональную решетку. Пластическая деформация металлов осуществляется в основном за счет скольжения. Двойникование в ряде случаев сопутствует деформации скольжением.  [c.115]

Двойникование. Кроме скольжений, при пластической деформации, происходит двойникование, заключающееся в сдвиге части данного зерна металла в другое положение, симметричное оставшейся части, относительно плоскости двойникования. Модель процесса двойникования может быть представлена в виде колоды карт, которая перекашивается в одну сторону (фиг. 78, а). Затем верхнюю часть колоды перекашивают в обратную сторону на двойной угол (фиг. 78, б). Конечно, при таких перекосах отдельные карты, изображающие слои атомов, скользят относительно друг друга.  [c.127]

Все сказанное относится к так называемой холодной деформации, проходяшей при низких температурах. Для металлов технической чистоты условная граница между низкими и высокими температурами лежит около 0,4 Гпл. При повышении чистоты эта температура заметно понижается. Для сплавов она доходит до 0,6 7пл. Влияние повышения температуры на пластическую деформацию выражается прежде всего в том, что снижаются критические скалывающие напряжения. Сдвиги и двойникование совершаются при меньших внешних нагрузках. Кроме того, начинают работать дополнительные системы скольжения, и это также облегчает пластическую деформацию металла. Наконец, если температура, при которой осуществляется деформация, достаточно высока, то в результате возросшей диффузионной подвижности атомов все или почти все дефекты, вызываемые пластической деформацией, в виде дислокаций, искажений атомных плоскостей, напряжений между блоками и между зернами, успевают уничтожиться. Это означает, что в ходе такой горячей деформации металл не упрочняется. Таким образом, пластическая деформация при высоких температурах характеризуется существенно меньшими напряжениями сдвига и отсутствием наклепа.  [c.45]

В работе [240] указано о возможности пластической деформации путем двойникования металлов платиновой группы (КЬ, 1г,  [c.121]

Наряду со скольжением пластическая деформация гексагональных металлов может осуществляться также двойникованием, которое происходит (см. гл. III) в том случае, если ось деформации образует малые углы с гексагональной осью и базисной плоскостью. Если ось кристалла близка к базисной плоскости, то касательное напряжение в базисной плоскости очень мало, тогда как в призматических и пирамидальных плоскостях оно может иметь довольно большую величину в зависимости  [c.202]

Пластическая деформация сталей и сплавов на основе железа и никеля на современных скоростных прокатных станах заканчивается при температурах ниже 800—950 °С, т. е. фактически происходит теплая пластическая деформация с характерными признаками множественного внутризеренного скольжения с подавлением рекристаллизационных процессов. В данном случае наблюдается повышенная пластичность, так как температурная зависимость пластичности характеризуется повышением пластичности задолго до температуры начала рекристаллизации. Это особенно заметно для металлов с г. п. у. решеткой (бериллий, магний) и объясняется облегчением сдвига по небазисным плоскостям. При этом двойникование подавляется облегченным скольжением.  [c.513]

Двойникование часто встречается в металлах с гексагональной и гранецентрированной кубической решеткой. Области сдвигов при двойниковании включают множество атомных слоев. По сравнению с исходным состоянием (ДО пластической деформации, рис. 55, а) атомы в каждом слое при двойниковании сдвигаются на одно и то же расстояние относительно слоя, лежащего под ним (рис. 55, б). В результате двойникования возникают двойниковые полосы, внутри которых расположение атомов является зеркальным отражением структуры решетки соседних частей кристалла. Если при скольжении металлы упрочняются (наклепываются), то при двойниковании они обычно разупрочняются.  [c.77]


Особенно интенсивно происходит двойникование в металлах с ограниченным числом систем скольжения. При этом, создавая мощные концентраторы напряжения, двойникование инициирует, например, в ГПУ-металлах скольжение по дополнительным призматическим и пирамидальным системам, что приводит к существенному повышению пластичности [5, 17]. В некоторых ориентировках монокристаллов с ГПУ-решеткой двойникование вообще является доминирующим механизмом пластической деформации [5, 18]. В ОЦК-металлах концентраторы напряжений у верщин двойников и высокая скорость протекания процесса двойникования способствуют раскрытию трещин и соответственно хрупкому разрушению металлов [9, 19] ограничивая таким образом их низкотемпературную пластичность.  [c.9]

Двойникование при низких температурах наблюдается также в ГЦК-металлах [5, 112] и особенно важную роль оно играет в процессе пластической деформации ГПУ-металлов [17, 113], имеющих ограниченное число систем скольжения, что затрудняет релаксацию концентраторов напряжений, следовательно, способствует началу двойникования.  [c.56]

Можно считать установленным, что пластические сдвиги, возникающие в металле под действием циклической нагрузки, приводят к наклепу и перераспределению напряжений как между зернами, так и внутри самих зерен. Наклеп для многих металлов сопровождается увеличением твердости. Пластическая деформация накапливается в результате скольжения и двойникования вдоль тех же кристаллографических плоскостей и по тем же направлениям, что и при действии статических нагрузок. И. А. Одинг дополнил эту теорию, обратив внимание на то, что циклические повторяющиеся напряжения вызывают в металле два одновременно протекающих явления упрочнение и разупрочнение Л. 31]. Упрочнение связывается с наклепом и старением, а разупрочнение — с появлением напряжений второго рода, искажений третьего рода, дроблением кристаллов на блоки.  [c.159]

Происходят ЛИШЬ В силу изменения взаимного расположения зерен в процессе взаимного перемещения их частей. Преодоление связей на границах зерен влечет за собой хрупкое разрушение. Постольку, поскольку ориентация плоскостей, в которых зерно предрасположено иметь скольжение или двойникование, по отношению к направлению внешней нагрузки в разных зернах различна, не все они сразу вступают в пластическую деформацию. В первую очередь подвергаются ей те зерна, в которых расположение вероятных плоскостей скольжения (двойникования) относительно направления внешних сил наиболее благоприятствует возникновению пластической деформации. Предел текучести поликристалла может быть подсчитан методами математической статистики достаточно удовлетворительно. Наибольшее число зерен, одновременно включающихся в пластическую деформацию посредством скольжения, наблюдается в поликристаллическом металле, зерна которого имеют кубическую гранецентрированную решетку, ввиду того, что число плоскостей и направлений скольжения в кристаллах с такой решеткой велико. Этим объясняется и то, что характер протекания пластической деформации в монокристалле ближе к такому характеру в поликристаллическом металле с указанной кристаллической решеткой, чем в случае иных решеток. Постепенно, по мере увеличения напряжений, в пластическую деформацию вступают и другие зерна с менее благоприятной для нее ориентацией.  [c.256]

Двойникование. Пластическая деформация некоторых металлов, имеющих плотноупакованные решетки К12 и Г12, кроме скольжения может осуществляться двойникованием, которое сводится к переориентации части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования (см. рис. 49, 5). Двойникование подобно скольжению сопровождается прохождением дислокаций сквозь кристалл. По сравнению со скольжением двойникование имеет меньшее значение. В металлах с ГЦК н ОЦК-решеткой двойникование наблюдается только при больших степенях деформирования и низких температурах.  [c.73]

Пластическая деформация поликристаллов. Пластическая деформация поликристаллического металла протекает аналогично деформации монокристалла путем сдвига (скольжения) или двойникования. Формоизменение металла при обработке давлением происходит в результате пластической деформации каждого зерна. Плоскости и направления скольжения в каждом зерне различные. При увеличении внешней силы скольжение первоначально начинается в наиболее благоприятно ориентированных зернах, где достигнуто критическое касательное напряжение. Движение дислокаций, начавшееся в одном зерне, не может переходить в соседнее зерно, так как в нем системы скольжения ориентированы по-иному.  [c.73]

Пластическая деформация некоторых металлов, имеющих плотно упакованные кубические или гексагональные решетки, кроме скольжения может осуществляться двойникованием (рис. 25, д), которое сводится к переориентации части кристалла в положение, симметричное по отношению к части, не изменившей ориентацию относительно плоскости, называемой плоскостью двойникования.  [c.83]

При деформировании металла его пластическая деформация может развиваться не только за счет скольжения, но и за счет двойникования. Это происходит при действии на металл ударных нагрузок и характерно для металлов с ромбической и тетрагональной решеткой. Процесс двойникования (см. рис. 15.2, б) состоит в смещении группы атомов относительно плоскости а—а, называемой плоскостью двойникования, в результате которого часть кристаллита занимает положение, зеркально отражающее положение его недеформированной части.  [c.283]

При скольжении у металлов значения пределов текучести при испытаниях на растяжение и сжатие почти одинаковы, так как этот способ пластической деформации практически инвариантен к направлению приложенной силы. При двойниковании значения пределов текучести одного и того же металла существенно зависят от знака приложенной нагрузки плюс тфи растяжении и минус при сжатии. Это объясняется тем, что двойникование может происходить лишь при определенном направлении прикладываемого усилия, а при обратном -отсутствовать. Например, пределы текучести магния при растяжении и сжатии могут отличаться в два раза.  [c.164]


Двойникование. В некоторых металлах деформация происходит двойникованием. При этом часть кристалла переходит в положение, которое симметрично другой части кристалла (рис. 9, б). Решетка деформированной части кристалла является зеркальным отображением решетки недеформированной его части. Все плоскости деформированной части кристалла сдвигаются относительно соседних плоскостей на одинаковую величину. Переход решетки в новое положение происходит почти мгновенно и часто сопровождается характерным потрескиванием. Двойникованием может быть получена незначительная степень деформации. Этот вид пластической деформации сопутствует основному ее виду — скольжению.  [c.13]

Помимо сдвигов по плоскостям скольжения, пластическая деформация поликристаллического металла сопровождается в определенных случаях двойникованием.  [c.14]

Наряду с основным механизмом пластической деформации металлических кристаллов — скольжением в некоторых металлах деформация происходит путем двойникования.  [c.108]

Расчет усредненного фактора ориентации и использование уравнений, подобных (66), имеет смысл только в том случае, когда пластическая деформация поли- и монокристаллов протекает качественно аналогично. Если же картины деформации существенно различаются, то такой подход не оправдан. Действительно, г. к. металлах, например, пластическая деформация монокристаллов может идти в основном путем базисного скольжения, а в том же поликристаллическом металле удлинение будет происходить за счет небазисного скольжения и двойникования. В таком случае кривую упрочнения монокристалла, естественно, нельзя использовать для расчета кривых 5 — е поликристалла.  [c.127]

Основным механизмом пластической деформации металлов и сплавов является внутризеренное сдвиговое перемещение одних частей кристалла (кристаллита) относительно других, осуществляемое с помощью многочисленных видов движения дислокаций. В этом случае говорят о внутризеренной пластической деформации. Сдвиговые механизмы пластической деформации разнообразны. Основными из них являются скольжение, двойникование, сбросообразование.  [c.105]

Поскольку схватывание бездиффузионное явление, проявление его от времени практически не зависит. Спекание же — процесс, идущий во времени, и как правило для получения соединения в этом случае требуются относительно длительные промежутки времени. Спекание при температурах 1шже температуры порога рекристаллизации практически НС происходит, схватывание же при достижении в контакте определенных условий может происходить при любых температурах. В рассматриваемом случае уместна аналогия с процессами пластической деформации металлов. При температурах ниже порога рекристаллизации возможны только бездиффузионные механизмы пластическо деформации — сдвигообразование и двойникование. При более высоких температурах становится возможным диффузионный механизм пластичности, характерный для аморфных тел, но роль сдвигообразования и двойникования остается, по-видимому, определяющей до самых высоких температур, особенно. при сравнительно больших скоростях приложения нагрузки и деформирования.  [c.174]

Пластическая деформация металлов с плотноупако-ванными решетками К12 и Г12, кроме скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойни к овация (см. рис. 23, д). Двойнико-вание подобно скольжению сопровождается прохождением дислокаций сквозь кристалл.  [c.40]

При диффузионной сварке в вакууме в зависимости от режимов процесса наблюдается большая или меньшая степень пластической деформации металла и некоторые характерные для нее явления двойникование зерен, образование субзерен, рекристаллизация и др. Двойникование происходит за счет одновременного скольжения по системе атомных плоскостей и поворота деформированной части кристалла. Образование субзерен, которые имеют близкое к совершенному строение и отличающуюся ориентацию, обусловлено параметрами сварки. Чем выше температура сварки, тем более низкие давления сжатия, а следовательно, и пластическая деформация вызывают образование субструктуры. Например, при сварке сплава ЭП99 образование субструктуры наблюдали при температуре 1448 К, давлении сжатия 30 МПа и времени сварки 6 мин. В сплаве ЭИ602 образование субструктуры наблюдали при температуре 1073 К и после выдержки в течение 8 ч. При диффузионной сварке жаропрочных сплавов в зоне стыка происходит раздробление зерен на мелкие зерна, которые трудно заметны при увеличении 200, но хорошо различимы при увеличении 1000. Такие зерна образуются по выступам на поверхностях, т. е. на участках, где пластическая деформация значительно больше средней.  [c.169]

Дтйникование. Пластическая деформация некоторых металлов, имеюших плотноупакованные решетки К12 и Г12, кроме скольжения может осуществляться двойникованием, которое сводится к пере-  [c.46]

ДВОЙНИКОВАНИЕ И ЕГО ГЕОМЕТРИЯ В МЕТАЛЛАХ С О. Ц. К., Г. Ц. К. и Г. П. У. РЕШЕТКАМИ, При ударном нагружении а-железа, например, во время скоростной пластической деформации, осуществляемой взрывом, возникают очень тонкие, кристаллографически правильно расположенные пластины — это двойники. Они образуются при деформации многих металлов с о. ц. к. структурой, включая молибден, вольфрам, хром, ниобий, тантал, а-железо. Двойники здесь обычно длинные и тонкие, редко достигающие толщины 5-10" см, поскольку с двойникованием связано протекание большой (7=0,707) пластической деформации (см. табл. 6). Плоскостями двойникования являются 112 (на рис. 77, а они перпендикулярны плоскости чертежа). Плоскости 112 упакованы в последовательности AB DEFAB . ... (79)  [c.135]

Наблюдения за поведением би- и поликристаллов гексагональных металлов показали, что их деформационное упрочнение определяется в основном наличием скольжения по небазисным плоскостям. При 77 К поликрис-сталлы цинка разрушаются совершенно хрупко, поликристалл магния — после деформации е 0,03-=-0,05, а поликристалл кадмия —при 8 0,15- 0,20. Даже при комнатной температуре поликристаллы цинка и магния выдерживают малую пластическую деформацию, в то время как монокристаллы кадмия разрушаются при е 0,35. Это происходит потому, что небазисное скольжение в магнии очень ограниченно и встречается только в призматических плоскостях. Несмотря на развитие двойникования, облегчающего пластическую деформацию вследствие переориентации отдельных областей в положение, удобное для скольжения, из-за хаотичности ориентировки общая деформация и пластичность поликристалла остаются малыми. В кадмии наблюдается существенное небазисное скольжение по пирамидальной системе 1122 <1123> и комбинация базисного и пирамидального скольжений удовлетворяет требованию пяти независимых систем скольжения. В результате у поликристаллического кадмия появляется заметная пластическая деформация до разрушения, при этом более высокая, чем у магния и цинка пластичность.  [c.228]

Механическое двойникование. В поликристаллических металлах двойникование, или закономерная (симметричная) переориентация кристаллической решетки при механическом воздействии, является дополнительным механизмом пластической деформации, которыш обычно вступает в действие при низких температурах, когда сопротивление началу скольжения очень высоко.  [c.9]

Для понимания роли двойникования в пластической деформации и разрушении металлов и их сплавов с ОЦК-решеткой представляет интерес оценка максимально возможного вклада двойникования в общую пластическую деформацию материала. Впервые такую оценку выполнили Шмид и Боас [135] для монокристаллического образца. По данным работы [135], относительное удлинение е при полном передвой-никовании монокристалла составляет  [c.65]


Технические процессы обработки металлов давлением осуществляются как в холодном, так и в горячем состоянии. Основными механизмами пластической деформации в горячем и холодном состоянии являются внут-ризеренное скольжение, двойникование, взаимное перемещение и поворот зерен. При пластической деформации происходит измельчение зерен металла, ориентация зерен вдоль преимущественного направления деформации, искажаются и заклиниваются плоскости скольжения, возникают напряжения между отдельными зернами, частями металла и др.  [c.249]

Другой механизм пластической деформации — двойникование, или двойниковый сдвиг — чаще всего встречается в металлах и сплавах, имеющих гексагональную шш объемно центрированную кубическую решетку. В отлриие от обычного сдвига двойниковый совершается только раз и не приводит к значительным пластическим деформациям. Однако вместе с ним появляются дополнительные очаги сдвиговой деформации по механизму обычного скольжения (подробнее см. гл. 1).  [c.391]

Для объяснения механизма формоизменения анизотропных металлов "обычно используют модель термического зацепления , предложенную в работе [281]. Согласно этой модели, напряжения сдвига, возникающие в месте контакта двух зерен, релаксируют в одном из зерен при пониженных температурах скольжением и двойникованием, а при высоких (выше эквикогезивной) — течением по границам зерен. В результате действия различных механизмов релаксации возникает необратимая пластическая деформация, накапливающаяся от цикла к циклу.  [c.10]

В гексагональных металлах (цинке, кадмии, магнии) обычно отмечается линейная зависимость между напряжением и деформацией на всем протяжении деформирования, особенно в области низких и высоких температур. При этом скорость деформационного упрочнения сильно зависит от температуры, но при низких температурах кривая утрачивает температурную зависимость. Для металлов с о. ц. к. решеткой наблюдается сильная зависимость кривой деформации от температуры. Во многих случаях пластическая деформация развивается путем двойнико-вания — однородного сдвига, при котором одна часть кристалла становится зеркальным отображением другой. Двойникование  [c.290]

Структура образцов или деталей из металлов и сплавов обычно состоит не из одного, а из многих кристаллических зерен, по-разному ориентированных. Пластическая деформация в пбликристалличе-ских телах осложняется разным направлением возможных плоскостей скольжения в разных зернах, несовершенствами строения кристаллической решетки и присутствием примесей на границах зерен. Кроме уже описанных скольжений, двойникований, перемещений атомов и разрушений в каждом зерне, зерна поворачиваются и скользят относительно друг друга.  [c.57]

Что касается влияния второй фазы на текстуру деформации, то оно зависит от пластических свойств фазы, а также от количества, морфологии и распределения ее в матрице. Как правило, наличие большого количества второй фазы с более низкой пластичностью, чем пластичность матрицы, блокирует развитие скольжения и двойниковання в первичных высоконапряженных системах сдвига, создает локальную концентрацию внутренних напряжений и тем самым стимулирует активность большого числа латентных низконапряженных систем сдвига. Это нарушает закономерности образования текстуры деформации металлов и приводит к разориенти-ровке свойственной ему текстуры, вплоть до полного ее исчезновения.  [c.201]

Пластическая деформация поликристаялическкх металлов складывается из деформации зерен и их относительного смеицения. Деформация овдельных зерен поликристалла, как и в монокри- сталле, осуществляется скольжением и двойникованием и со- г провождается изменением формы и размеров зерен. А относительное смещение зерен представляет собой перемещение и поворот их друг относительно друга.  [c.14]

Уареднение по объему элементарных деформаций, возникающих при перемещении дислокаций в. монокристалле, может привести к двум видам его пластической деформации к скольжению (основной вид деформации металлов) и к сдвигу, или двойникованию. Скольжением называют перемещение части кристалла вдоль кристаллографической плоскости или нескольких, параллельных плоскостей. Скольжение обычно происходит вдоль плоскостей решетки кристалла с максимальной плот1ностью упаковок атомов (поэтому монокристаллы существенно анизотропны, а у поликристаллов степень анизотропии не превышает 25 /в). Сдвигом Или двойникованием называют форму скольжения, при которой параллельные плоскости кристалла смёщаются одна относительно другой таким образом, что решетки кристалла по разные стороны от плоскости двойникования представляют собой зеркальное отражение.  [c.84]


Смотреть страницы где упоминается термин Пластическая деформация металлов двойникованием : [c.47]    [c.174]    [c.241]    [c.54]    [c.180]    [c.230]   
Смотреть главы в:

Механические испытания и свойства металлов  -> Пластическая деформация металлов двойникованием



ПОИСК



Двойникование

Деформация двойникованием

Деформация металла, пластическая

Деформация пластическая

Металлы деформация

Пластическая двойникование

Пластическая деформаци

Пластическая деформация двойникованием



© 2025 Mash-xxl.info Реклама на сайте