Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромоникелевые Коррозионная стойкость

В случае требований высокой коррозионной стойкости следует применять хромоникелевые аустенитные стали, описанные в п. 2 этой главы, обладающие к тому же более высокой хладостойкостью, чем стали с феррит 10Й структурой (в том числе и 0Н6 и 0Н9).  [c.502]

Низкое легирование незначительно изменяет коррозионную стойкость стали в морских условиях. Высоколегированные хромистые и хромоникелевые стали подвержены в морской воде местной щелевой и язвенной коррозии. Высокой коррозионной устойчивостью в морской воде обладает монель-металл (25—30% Си, остальное Ni), медь и ее сплавы.  [c.404]


Коррозионная с т о Г1 к о с т ь х р о м о н и к е л е в ы х, сталей (как и хромистых) обусловлена в основном образованием на поверхности сплава защитной пассивной пленки однако хромоникелевые стали обладают несколько более высокой коррозионной стойкостью, чем хромистые стали. Объясняется это наличием в сплаве никеля, который способствует образованию мелкозернистой однофазной структуры и повышает стойкость стали в разбавленных растворах серной кислоты, а также,-в ряде водных растворов солей.  [c.226]

Необходимо отметить высокую коррозионную стойкость титана и его сплавов к действию морской воды в этом отношении он превосходит даже нержавеющую хромоникелевую сталь.  [c.78]

Детали и узлы проточной части насосов, работающих в контакте с агрессивными средами, изготовляют из коррозионно-стойких материалов (высоколегированных сталей, аустенитных хромоникелевых, с присадками кремния и молибдена, повышающими их коррозионную стойкость, а также из высоколегированных чугунов с присадками кремния, хрома,никеля и меди).  [c.202]

По составу нержавеющие стали делятся на хромистые и хромоникелевые. Кроме основных элементов (углерода, хрома, никеля) нержавеющие стали могут быть дополнительно легированы молибденом, титаном, ниобием, медью, кремнием, которые вводят для повышения коррозионной стойкости, механических и технологических свойств стали. Нержавеющие стали бывают нескольких структурных классов ферритного, ферритно-мартенситного, мартенситного, аустенит-  [c.31]

Кроме того, небольшие колебания содержания компонентов хромоникелевых аустенитных сталей существенно влияют на стабильность аустенита и образование мартенсита при холодной деформации, которое может вызвать снижение коррозионной стойкости.  [c.88]

Хромоникелевые стали обладают повышенной кислотостойко-стью. В пассивном состоянии скорость коррозии этих сталей в. большинстве случаев ничтожна. В активном состоянии по мере превышения критической кислотности подверженность этих сталей, коррозии значительно возрастает. В азотной кислоте, которая является сильным окислителем, хромоникелевая сталь может находиться как в пассивном, так и в транспассивном состоянии. Для экстремальных окислительных условий рекомендуется применять хромоникелевые стали без добавок молибдена с содержанием углерода не более 0,03%. В восстановительной соляной кислоте подобные стали имеют пониженную коррозионную стойкость. В щелочной среде хромоникелевые стали коррозионно устойчивы в зоне-температур 400—800° С.  [c.34]


Следует также учитывать, чю в сернокислотном производстве за последнее время произошли большие изменения как в используемом сырье, так и в технологическом оборудовании. Остановимся на проведенных в свое время испытаниях в производственных условиях, представляющих несомненно практический интерес и в настоящее время. Выбор сплавов для испытаний производился с учетом того, что наиболее агрессивным компонентом среды является серная кислота, причем учитывалось и то, что капли серной кислоты могут наряду с коррозионным разрушением производить и механическое изнашивание (эрозию), поэтому наибольший интерес представляют стали аустенитного класса. Хромистые и хромоникелевые стали не обладают высокой коррозионной стойкостью в серной кислоте, но учитывая, что газовая смесь содержит 10 — 12 % кислорода, который способствует сохранению пассивности, представилось целесообразным использовать в качестве объектов  [c.39]

Никель. Никель добавляется к коррозионно-стойким сталям для повышения пластичности. Стали с достаточно большим количеством никеля имеют чисто аустенитную структуру и хорошо обрабатываются. Кроме того, никель в ряде сред повышает коррозионную стойкость сталей. Но повышение содержания никеля, как правило, увеличивает восприимчивость хромоникелевых сталей к МКК. Под влиянием больших количеств никеля даже исчезает преимущество сталей с повышенным содержанием хрома. Так, сталь с 25 % Сг, имеющая чисто аустенитную структуру за счет увеличения количества никеля, не отличается от сталей типа 18-8 по предельному содержанию углерода, не вызывающему склонность к МКК [26]. Поэтому для уменьшения склонности к МКК не следует чрезмерно повышать количество никеля в коррозионно-стойких сталях, если это не вызывается необходимостью.  [c.53]

Легированием хромоникелевых сталей молибденом, медью и марганцем удается в определенной степени повысить коррозионную стойкость сталей в неокисляющих средах, в том числе в растворах серной и соляной кислот и в средах, содержащих ионы хлора. Хромоникельмолибденовые стали применяются для изготовления аппаратуры, используемой в средах высокой агрессивности в горячих серной, сернистой и фосфорной кислотах, а также в кипящих растворах муравьиной, щавелевой и уксусной кислот.  [c.39]

Высокая коррозионная стойкость хромистых и хромоникелевых сталей обусловлена формированием на их поверхности защитной пассивной пленки. Однако хромоникелевые стали в целом более коррозионно стойки, чем хромистые.  [c.119]

Из табл. 17.2 видно, что с введением в хромоникелевые стали небольших добавок ниобия и титана существенно повышается скорость переноса масс этих сталей. В этом же направлении, но в меньшей степени влияет добавка алюминия. По результатам опытов были получены эмпирические уравнения, приближенно описывающие влияние различных легирующих компонентов на скорость переноса масс. Коррозионная стойкость сталей снижается при увеличении содержания никеля, при введении ниобия и титана благоприятное влияние оказывают добавки молибдена, кремния, алюминия.  [c.262]

Исходные свойства стали длительно сохраняются лишь при содержании кислорода в жидком натрии не выше 2-10" %. Влияние повышенных концентраций кислорода и смеси кислорода с водородом на коррозионную стойкость низколегированных, хромистых и хромоникелевых сталей видно из табл. 17.7, где и —  [c.264]

Классификация 9 Хромоникелевые стали — Диаграммы состояния тронные 29 — Диаграммы структурные 31, 32 — Коррозионная стойкость 33, 34 — Механические свойства — Зависимость от влияющих факторов 30, 31 — Структура и склонность к охрупчиванию 32 Хромоникелевые стали аустенитные и аустенитно-ферритные 9, 22—28  [c.444]

В условиях возможного пассивирования несплошные катодные покрытия могут облегчить пассивирование защищаемого металла в порах, повышая их анодный ток до пассивирующего значения, т. е. защищать его не только механически, но и электрохимически. Так, осаждение пористых покрытий из Си и Pt на хромистой и хромоникелевой сталях повышает их коррозионную стойкость в H2SO4 (рис. 220) "начиная с некоторой их толщины, когда площадь катодного покрытия не слишком мала, и, наоборот, понижает их коррозионную стойкость в сильно депассивирующей среде НС1 (рис. 221), облегчая протекание контролирующего скорость коррозии катодного процесса.  [c.319]


Наибольшая коррозионная стойкость аустенитных хромоникелевых сталей достигается после закалки на аустенит. Отпуск при 450— 800° С хромоникелевых аустенитных сталей приводит к интеркрис-таллитной коррозии. После закалки с высоких температур 17%-ных хромистых сталей возможна интеркристаллитная коррозия.  [c.264]

Необходимость длительной и безотказной работы различных деталей и изделий в контакте с агрессивной средой предъявляет высокие требования к коррозионной стойкости и долговечности материалов, из которых они изготовлены. В качестве коррозионностойких сталей во многих отраслях промышленности находят применение хромистые и хромоникелевые стали, содержащие не менее 12...13 % хрома. Однако эти стали во многих случаях могут быть подвержены одному из наиболее опасных видов коррозионного поражения - меж -фисталлитной коррозии (МКК), нередко являющейся причиной отказов оборудования и возникновения аварийных ситуаций. Межкристаллит-ная коррозия локализуется по границам зерен без видимых вооруженным глазом изменений внешнего вида, формы и размеров изделий. Сцепление между зер. сслабевает как в поверхностном слое, так и по всему сечению изделия, что может привести к практически полной потере функциональной способности изделия и механической прочности.  [c.83]

Для работы в агрессивных средах применяют высоколегированные хромоникелевые стали (I4X17H2, 20ХВН4Г9, 12XI8H10 и др.) в паре с мягкими антифрикционными материалами (углеграфиты, наполненные полимерные материалы и др.), а также низколегированные коррозион-но-стойкие чугуны и твердые сплавы (ВКЗ, ВК6, ВК8 и др.). В целях повышения твердости и улучшения коррозионной стойкости все металлические материалы подвергаются термообработке, нержавеющие стали - азотированию и хромированию.  [c.138]

Стойкость к коррозионной кавитации зависит как от коррозионной стойкости, так и прочности металла. Самоупрочняющнеся стали обладают высокой стойкостью к коррозионной кавитации (табл. 8). Так, у хромомарганцовой стали марки 30Х10Г10 в результате механического воздействия происходит распад нестабильного аустенита и превращение его в мартенсит, что способствует высокой стойкости этой стали к коррозионной кавитации, в то время как стойкость хромоникелевой нержавеющей стали марки 1Х18Н9Л со структурой стабильного аустенита значительно меньше.  [c.18]

Хромоникелевые стали аустенитного класса обладают наиболее высокой коррозионной стойкостью среди нержавеющих сталей и отличаются хорошими технологическими свойствами — хорошо обрабатываются давлением и обладают хорошей свариваемостью. В закаленном состоянии эти стали имеют низкое отношение предела текучести к пределу прочности. Прочностные характеристики этих сталей могут быть повышены в результате наклепа. Так, при пластической деформации на 40 % стали марки Х18Н10Т в холодном состоянии предел прочности повышается вдвое (ав = 1200 МПа), а предел текучести в 4 раза (сГт = = 1000 МПа). При этом сохраняется достаточно высокая пластичность, позволяющая производить различные технологические операции.  [c.32]

С целью экономии дефицитного никеля часть его может быть заменена марганцем или азотом. При этом Структура стали может сохраниться аустенитной либо перейти в аустенитно-ферритный или аустенитно-мартенситный класс. Экономнолегированные хромоникелевые стали по коррозионной стойкости не уступают сталям типа 18—8 и могут полноценно их заменять.  [c.32]

Еще большую коррозионную стойкость имеют хромоникелевые кислотостойкие стали с аустенитной структурой I2X18H9 и 12Х18Н9Т. Последняя противостоит МКК.  [c.42]

Низкую коррозионную стойкость имеет хромоникелевая аусте-нитная сталь Х16Н9М за время 100 тыс. ч. При коррозии этой стали на ее поверхности образуется рыхлая оксидная пленка, а трубы по всему периметру покрыты межкристаллитными микротрещинами с максимальной глубиной около 0,15 мм.  [c.148]

Выше показано, что хромоникелевая аустенитная сталь 12Х18Н12Т имеет в продуктах сгорания мазута относительно низкую коррозионную стойкость и в широком интервале температур газа ее сопротивляемость к коррозии ниже, чем у низколегированных перлитных сталей. Причиной этого является образование при взаимодействии золы мазута с компонентами металла соединений, температура плавления которых ниже рабочих температур труб. Таким компонентом в хромоникелевых сталях является никель. Материалами, где отсутствует в существенных количествах никель и которые должны иметь более высокую коррозионную стойкость в продуктах сгорания мазута, считаются аустенитные хромомарганцевые стали.  [c.183]

На рис. 4.37 на параметрической диаграмме коррозионной стойкости приведены экспериментальные точки глубины коррозии труб из хромомарганцевых аустенитных сталей, а также стали 12Х18Н12Т. Видно, что коррозионная стойкость всех исследованных хромомарганцевых аустенитных сталей равна и практически не отличается от коррозионной стойкости хромопикелевой аустенитной стали 12Х18Н12Т. Такой результат, по-видимому объясняется тем, что температуры металла, при которых были проведены экспериментальные исследования (до 550 С), являются слишком низкими для воздействия сульфатного механизма коррозии с образованием сульфидных эвтектических смесей с низкой температурой плавления. При существовании сульфатного механизма коррозии можно полагать, что преимущество хромомарганцевых аустенитных сталей в существенной степени должно проявляться при более высоких температурах металла. Следовательно, до температуры металла 550 °С хромомарганцевые аустенитные стали по коррозионной стойкости не имеют явных преимуществ по сравнению с хромоникелевой аустенитной сталью 12Х18Н12Т.  [c.184]


Экономнолегированные по никелю стали типа rMn9Ni5N с точки зрения коррозионной стойкости являются переходными от хромистых к хромоникелевым сталям.  [c.33]

Молибден. Молибденом обычно легируют хромоникелевые коррозионно-стойкие стали для увеличения их способности к само-пассированию и повышению коррозионной стойкости в неокислительных и слабовосстановительных средах. Часто молибденсодержащие стали применяют в средах, вызывающих МКК. В стали, легированные молибденом для сохранения аустенитной структуры (молибден-ферритообразователь), вводится повышенное количество никеля. На каждый 1 % Мо вводится дополнительно 1,7 % N1.  [c.55]

Значительное содержание молибдена в стали при определенных условиях термической обработки способствует образованию, помимо феррита и о-фазы, ряда интерметаллидов, снижающих коррозионную стойкость материала. Легирование хромоникель-молибденовых коррозионно-стойких сталей титаном или ниобием несколько повышает их стойкость против МКК в неокислительных средах, но малоэффективно в сильноокислительных. Следовательно, можно считать, что в большинстве случаев присутствие молибдена отрицательно влияет на стойкость основных типов хромоникелевых коррозионно-стойких сталей и сплавов в сильно-окислительных средах. Исключением являются медьсодержащие стали и сплавы с высоким содержанием никеля.  [c.56]

Как видно из приведенных данных, все испытанные хромомарганцовистые стали различных плавок, в отличие от хромоникелевой стали 1Х18Н9Т, со временем подвергаются более сильной коррозии, однако по баллу коррозионной стойкости (1) они все же относятся к весьма коррозионностойким сплавам.  [c.68]

Таким образом, изделия, эксплуатирующиеся в условиях влажного субтропического климата из дорогостоящих хромоникелевых сплавов с успехом могут быть заменены изделиями из хромомарганцевых сплавов, обладающих достаточной коррозионной стойкостью (сплавы композиции Х15АГ15).  [c.69]

Так, хромомарганцевые сплавы могут с успехом заменить хромоникелевые для изделий, предназначенных для работы в тропическом и субтропическом климате. Исследование возможности электрохимической защиты хромомарганцевых сплавов в морской воде показало, что они стойки в паре с углеродистой сталью. Хромомарганцевые сплавы типа Х15АГ15 в условиях морской воды оказались коррозионностойкими, у них отсутствует склонность к коррозионному растрескиванию. Хромомарганцевые сплавы, содержащие бор, обладают повышенной коррозионной стойкостью в связи с образованием в структуре нитридов, карбидов и силицидов бора. В изделиях, эксплуатирующихся непосредственно в морской воде, они уступают хромоникелевым сплавам.  [c.102]

Широкое применение получили стали системы Fe — Сг — Ni без присадок и с присадками меди, молибдена, титана и ниобия. Эти стали характеризуются хорошими механическими и технологическими свойствами и обладают хорошей коррозионной стойкостью. Никель повышает пластичность стали, способствует формированию мелкозернистой структуры. Холодная деформация ведет к повышению прочности данных сталей. Однако эти стали Склонны к межкристаллитной и точе шой коррозии. Следует отметить, что хромоникелевые стали обладают более высокой коррозионной стойкостью, чем хромистые стали, поскольку йведение никеля способствует обр- зованию мелкозернистой однофазной структуры сплава, для которой характерна повышенная коррозионная стойкость.  [c.39]

Существует два вида межкристаллитной коррозии. Первый вид характерен для восстановительных и слабо окислительных сред и связан в основном с выделением карбидов хрома. На. практике этот вид коррозии встречается у сталей, содерл<ащих достаточное количество углерода, а также у сталей, подвергающихся нагреванию при температурах 450—800°С. Второй вид межкристаллитной коррозии наблюдается в сильно окислительных средах, например в кипящей концентрированной азотной кислоте, содержащей анионы СггО ", Мп0 , VOj, NOj или катионы Се + Fe +. Последний вид коррозии не связан с выделением карбидов хрома и протекает почти во всех высоколегированных сталях, даже когда они содержат незначительное количество углерода и прошли правильную термообработку. Такая коррозия часто наблюдается даже в кипящей 65%-ной азотной кислоте при наличии фаз с высоким содержанием хрома. При более низких концентрациях азотной кислоты заметного снижения коррозионной стойкости хромоникелевых сталей не наблюдается и даже при температуре кипения они обладают хорощей устойчивостью.  [c.94]

Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии.  [c.139]

Легирование хромом и кремнием хромистых типа Х13 и хромоникелевых типа Х15Н9 сталей повышает их коррозионную стойкость в 2—3 раза при увеличении содержания хрома на 1 % и в 5 раз при таком же увеличении содержания кремния.  [c.280]

В то же время добавки молибдена в хромоникелевые стали типа Х18Н10 снижают коррозионную стойкость в условиях действия азотной кислоты повышенных концентраций. Присутствие ферритной фазы в этой стали снижает ее коррозионную стойкость в некоторых средах и, в частности, в условиях производства мочевины или целлюлозы.  [c.33]

При неокисляющих кислотах (гал-лоидно-водородные кислоты, серная кислота и некоторые другие) на обычных хромистых или хромоникелевых сталях благородный потенциал не появляется, В этом случае в значительной степени улучшают коррозионную стойкость специальные добавки, нанример, молибдена и других легирующих элементов, обладающих в этих средах более высокой коррозионной стойкостью, чем железо и хром.  [c.62]


Смотреть страницы где упоминается термин Хромоникелевые Коррозионная стойкость : [c.276]    [c.427]    [c.220]    [c.161]    [c.15]    [c.183]    [c.87]    [c.34]    [c.70]    [c.30]    [c.229]    [c.238]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.33 ]



ПОИСК



Коррозионная стойкость хромоникелевой стали 18-8 с ниобием

Коррозионная стойкость хромоникелевой стали марок

Коррозионная стойкость хромоникелевой стали типа

Коррозионная стойкость хромоникелевых аустенитных сталей

Коррозионная стойкость хромоникелевых сталей

Коррозионная стойкость хромоникелевых сталей Веденеева, Н. Д. Томашов. Коррозия стали 1Х18Н9 в сернокислых растворах

Коррозионная стойкость хромоникелевых сталей аустенито-ферритного класса

Коррозионная стойкость хромоникелевых сталей против атмосферной коррозии

Коррозионная стойкость хромоникелевых сталей с кремнием

Коррозионная стойкость хромоникелевых сталей с молибденом

Коррозионная стойкость хромоникелевых сталей с приеадками молибдена, меди и кремния

Коррозионная стойкость хромоникелевых сталей типа

Коррозионная стойкость чугуна хромоникелевого щелочестойког

Определение влияния механических напряжений на коррозионную стойкость аустенитных хромоникелевых сталей

Стойкость коррозионная

Хромоникелевые

Хромоникелевые Коррозионная стойкость — Оценка

Хромоникелевые стали — Диаграммы состояния тройные 29 — Диаграммы структурные 31, 32 — Коррозионная стойкость 33, 34 — Механические свойства — Зависимость



© 2025 Mash-xxl.info Реклама на сайте