Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ось бруса центральная

Моменты инерции сечения относительно главных центральных осей называются главными центральными моментами инерции. Плоскости, проведенные через ось бруса и главные оси инерции его поперечного сечения, называются главными плоскостями.  [c.196]

Если на брус постоянного сечения с прямолинейной центральной осью действуют внешние силы и пары сил, расположенные в плоскости, проходящей через центральную ось, то ось бруса будет деформироваться. В поперечных сечениях бруса возникают изгибающие моменты, т. е. внутренние моменты, действующие в плоскости, перпендикулярной плоскости поперечного сечения. Такой вид нагружения называют изгибом. Брус, закрепленный на опорах и работающий в основном на изгиб, называется балкой.  [c.134]


Примем ось бруса за oxz, а главные центральные оси инерции поперечного сечения за оси ох-[ и 0x2, при этом ось oxi направим в сторону растянутых волокон (рис. 15).  [c.96]

Ось бруса искривляется, так как сечения поворачиваются относительно главной центральной оси сечения г. При чистом изгибе имеют место два перемещения поступательное — г/(х) (прогиб балки) и угловое — Фг (х) (угол поворота сечения).  [c.14]

Настоятельно рекомендуем обозначать продольную ось бруса буквой 2, как это принято теперь во всех утвержденных учебниках. Сделано это потому, что по ГОСТам на профили проката буквами X и 1/ обозначены главные центральные оси поперечного сечения. Обозначать, как это иногда делают, продольную ось буквой X, а потом вводить для одной из главных центральных осей букву г, по мнению кафедр сопротивления материалов ряда ведущих вузов, нецелесообразно.  [c.56]

Особо следует рассмотреть случай пространственного изгиба бруса круглого поперечного сечения (мы не можем подобрать подходящего специального наименования для этого случая). Очевидно, упругая линия бруса — пространственная кривая, но в то же время в каждом поперечном сечении силовая и нулевая линии взаимно перпендикулярны, что характерно для прямого изгиба. Расчет на прочность ведется (как при обычном прямом изгибе) по результирующему (суммарному) изгибающему моменту. Конечно, сказанное о брусе круглого (сплошного или кольцевого) поперечного сечения справедливо и для бруса с сечением в форме квадрата или любого правильного многоугольника, т. е. для бруса с сечениями, у которых все центральные оси главные. Об этом, естест венно, надо сказать, но расчеты удобнее вести по формулам косого, а не прямого изгиба.  [c.141]

Плоский изгиб. Рассмотрим брус цилиндрической или призматической формы с прямолинейной центральной осью. Любая плоскость, содержащая центральную ось бруса, называется центральной.  [c.143]

Так как за оси х и у нами приняты главные центральные оси инерции площади поперечного сечения бруса, центробежный момент инерции равен нулю, вследствие чего нулю равен и изгибающий момент Му. Поскольку ось х —центральная, статический момент 5 относительно этой оси равен нулю отсюда нулю равна и продольная сила N.  [c.117]

Плоскость, проходящая через ось бруса и главную центральную ось поперечного сечения, называется главной плоскостью.  [c.312]


Если прямой изгиб является частным случаем поперечного, то косой изгиб — комбинация прямых изгибов в плоскостях Оху и Oxz и есть общий вариант поперечного изгиба. Название этого вида деформации связано с тем, что в общем случае деформированная ось бруса является пространственной кривой. Вариант равенства Jy = Jz в определении исключается, так как в этом случае любая центральная система координат является главной (см. утверждение 3.8). И, следовательно, одну из осей всегда можно совместить с вектором изгибающего момента Мц = = —Му + М к. В результате придем к прямому поперечному изгибу (см. гл. 5).  [c.187]

Пример. Рассмотрим изгиб бруса прямоугольного сечения в плоскости [xz)[Ox — центральная ось бруса длиной /, Ь — ширина, h — толщина). Из гипотезы плоских сечений в главе II получена формула  [c.246]

Из данного выше определения центрального растяжения сжатия и из уравнений равновесия вида (2.1.6) отсеченной части бруса, образованной поперечным сечением, следуют определенные требования к внешним нагрузкам. Ясно, что центральное растяжение-сжатие бруса возникает только при таких нагрузках на него, при которых отлична от нуля только сумма проекций на ось бруса х всех действующих на отсеченную часть нагрузок. А суммы их проекций на лежащие в плоскости попе-  [c.64]

Итак, при центральном растяжении-сжатии прямая до деформации ось бруса остается прямой и при деформации.  [c.69]

При центральном растяжении-сжатии ось бруса остается прямолинейной, а плоские до деформации поперечные сечения остаются плоскими и нормальными к оси бруса после деформации.  [c.70]

Потенциальную энергию от изгибающих моментов М , т.е. первое слагаемое в формуле (8.7.3), можно получить так же, как получена потенциальная энергия бруса при центральном растяжении сжатии в п. 4.7.1. Для этого рассмотрим элемент балки длиной dx. При его деформации под действием изгибающих моментов Mz ось бруса получит кривизну 1/р = Mz/EJz (см. формулу (8.3.1)), и поэтому правое сечение повернется относительно левого на угол da = dx/р (рис. 8.63). Если условно считать левое сечение неподвижным (т.е. вести рассуждения в системе координат, связанной с левым сечением), то при деформации элемента момент  [c.231]

Если ось бруса вертикальна, то его собственный вес вызывает центральное растяжение или сжатие. Если вертикальный брус закреплен верхним концом, то <ут собственного веса он растягивается, а при закреплении нижнего конца — сжимается. Собственный вес вертикального бруса можно рассматривать как продольную (осевую) внешнюю нагрузку, распределенную вдоль оси бруса.  [c.45]

Ограничимся рассмотрением брусьев, поперечные сечения которых имеют по меньшей мере одну ось симметрии. Как известно, ось симметрии и перпендикулярная ей центральная ось являются главными центральными осями сечения. Плоскость, проходящая через продольную ось бруса и одну из главных центральных осей его поперечного сечения, называется главной плоскостью бруса (иногда ее называют главной плоскостью инерции).  [c.221]

Р] — допускаемое значение силы р — полное напряжение, давление Qx, Яу, С — поперечная сила, действующая соответственно вдоль главной оси X или у, или суммарная д — интенсивность распределенной нагрузки [9] — допускаемое значение интенсивности распределенной нагрузки и — потенциальная энергия деформации и — удельная потенциальная энергия деформации — осевой момент сопротивления сечения, соответственно относительно оси к или у Й7р — полярный момент сопротивления X, у, г — координаты рассматриваемой точки (обозначения осей координат г—продольная ось бруса, х и у — главные центральные оси его поперечного сечения)  [c.7]

Плоскость, проходящая через ось бруСа и одну из главных центральных осей инерции его поперечного сечения, называется главной плоскостью инерции.  [c.168]

Напомним, что главной плоскостью бруса называется плоскость, проходящая через продольную ось бруса и одну из главных центральных осей инерции его сечения.  [c.191]


Рассмотрим сначала случай чистого изгиба бруса, сечение которого обладает двумя осями симметрии, причём изгиб происходит в одной из этих плоскостей. Пусть оси х, у будут осями симметрии поперечного сечения, ось г—центральная продольная ось бруса и (у, г) — плоскость изгиба. Обозначим через х — кривизну центральной оси бруса в результате изгиба, Ь(у) — ширину и Л — высоту сечения (рис. 44). Удовлетворяя условиям совместности дефор-.  [c.126]

В данном разделе рассматривается нагружение бруса поперечными силами и парами сил, лежащими в одной, проходящей через ось бруса, плоскости, называемой силовой. Линия пересечения силовой плоскости с плоскостью поперечного сечения называется силовой линией. Если силовая линия совпадает с главной центральной осью, изогнутая ось бруса (его упругая. пиния) располагается в силовой плоскости и такой вид изгиба называется плоским поперечным, в противном случае - косым. Существуют более сложные формы изгиба, которые будут рассмотрены позже.  [c.119]

Таким образом, прочность бруса достаточна наибольшее по абсолютному значению напряжение в опасном сечении не превышает [о, =160 МПа. Эпюра суммарных напряжений построена на рис. 2.99, в. Заметим, что нейтральная линия в сечении бруса параллельна центральной оси инерции.  [c.235]

Будем рассматривать брусья, поперечные сечения которых имеют хотя бы одну ось симметрии. Как известно, ось симметрии и перпендикулярная ей центральная ось являются главными центральными осями сечения. Если силовая плос-  [c.256]

Если силовая плоскость проходит через главную центральную ось у поперечного сечения, то брус (балка) испытывает прямой изгиб в вертикальной плоскости.  [c.258]

Как уже было отмечено, поперечный изгиб бруса мол<ет сопровождаться кручением. Это происходит, как правило, тогда, когда главная центральная ось поперечного сечения, с которой совпадает линия действия изгибающей силы Р, не является осью симметрий сечения . Возникающее в этом случае кручение можно устранить путем приложения изгибающей силы Р по линии, параллельной главной центральной оси и проходящей через определенную точку в плоскости поперечного сечения, называемую центром изгиба.  [c.206]

Если брус изгибается только силой Р, параллельной главной центральной оси Хг, то Qjt, = О, Q, = Р и равенство (8.18) принимает вид  [c.207]

Система координат выбирается следующим образом начало в центре тяжести поперечного сечения, ось г — по внешней нормали к сечению (т. е. вдоль оси бруса), оси х и у совпадают с так называемыми главными центральными осями сечения (см. гл. V). Если сечение имеет хотя бы одну ось симметрии, то она является главной центральной осью и, следовательно, одной из координатных осей х или у).  [c.6]

Плоский косой изгиб бруса возникает под действием нагрузок, плоскость действия которых (силовая плоскость) не совпадает ни с одной из главных плоскостей инерции (рис. 8-2). При этом виде изгиба упругая линия бруса — плоская кривая, н е л е ж а щ а я в силовой плоскости. Если поперечое сечение бруса таково, что любая его центральная ось является главной (некоторые примеры таких сечений представлены на рис. 8-3), то независимо от положения силовой плоскости изгиб будет прямым.  [c.180]

При построении эпюр для пространственного бруса применяется скользящая система координат (рис. 9-5). Ось г всегда направлена вдоль оси бруса (для бруса с одним жестко защемленным и другим свободным концом ось 2 направляют в сторону свободного конца). Оси хну совпадают с главными центральными осями инерции рассматриваемого сечения. Оси координат образуют правовинтовую систему. Рекомендуется вначале изобразить систему координат на одном из гори.зонтальных участков, например на участке II (см. рис. 9-5). Ось у направляем вверх, а ось х—вправо (если смотреть с конца оси г). Переход на следующий участок производится путем поворота системы координат вокруг той оси, которая перпендикулярна к плоскости двух данных участков переход от участка II к участку III совершается путем поворота вокруг оси г/а, а от участка II к участку / — вокруг оси Х2-  [c.216]

Для бруса, подвергающегося одновременному действию поперечной и осевой нагрузок (а также для бруса с начальной кривизной) говорить о потере устойчивости прямолинейной формы равновесия (в плоскости действия поперечных нагрузок) лишено смысла. Поэтому эйлерова сила должна рассматриваться лишь как некоторое обозначение, введенное по аналогии с формулой Эйлера для критической силы центрально сжимаемого прямолинейного стержня. Формальное различие в вычислении эйлеровой силы и критической силы (по формуле Эйлера) следует из приведенных в тексте указаний о моменте инерции и гибкости.  [c.262]

Полученное выражение позволяет вычисли1ь величину касательных напряжений, возникающих в продольных сечениях бруса. Напряжения в поперечных сечениях равны им, как парные. Зависимое ь т от в сечении определяется через статический момент 5. При подходе к верхней кромке сечения площадь заштрихованной части сечения (рис. 146, б) уменьшаечея до нуля. Здесь, следовательно, 5 = 0. При подходе к нижней кромке заштрихованная часть охватывает все сечение. Так как ось х — центральная, то и здесь = 0. Поэтому  [c.136]

Введем некоторые понятия. Плоскость, проходящая через одну из главных центральных осей сечения и геометрическую ось бруса, называется главной плоскостью. Плоскость, в которой действуют внешние нагрузки, вызывающие изгиб балки, называется аыовой плоскостью. Линия пересечения силовой плоскости с плоскостью поперечного сечения бруса носит название силовой линии.  [c.251]


Прямой изгиб — деформация, вызванная системой сил, перпендикулярных оси бруса, и пар сил, лежащих в одной из главных плоскостей (зруса. Главная плоскость — плоскость, проходящ 1Я через ось бруса и одну из лаи-ных центральных осей инерции сечения. Плоскость хОу (рис. 1.28) — плоскость действия нагрузок — главная плоскоспъ, т. е. она проходит через ось бруса с и главную центральную ось у.  [c.24]

В настоящей главе рассмотрен прямой изгиб, возникающий в том случае, когда изгибающрш момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. Прямой изгиб возникает, например, тогда, когда на прямой брус действует нагрузка в виде системы сосредоточенных сил, расположенных в одной плоскости, проходящей через одну из главных центральных осей инерции каждого поперечного сечения бруса в этой же плоскости располагается изогнутая ось бруса.  [c.208]

Главной плоскостью бруса называется плоскость, проходящая через ось бруса и одну из главньк центральных осей инерции каждого его поперечного сечения.  [c.240]

Гла-вным достижением Бресса в инженерной науке была его теория кривого бруса с ее применениями в проектировании арок ). В первой части этой книги он рассматривает внецентренное сжатие призматического бруса. Частный случай бруса прямоугольного сечения, нагруженного в плоскости симметрии, был уже исследован Томасом Юнгом (см. стр. 117). Бресс ставит задачу в общем виде и показывает, что если построить для поперечного сечения бруса центральный эллипс инерции (рис. 74), то направление нейтральной оси можно легко установить для любого положения нагрузки. Если точку О приложения нагрузки перемещать по прямой m, то нейтральная ось будет оставаться параллельной каса-  [c.178]

Изгибом бруса нюывается такая его деформация, которая сопровождается изменением кривизны его осевой линии. Введем понятие продольного волокна как совокупности материальных точек бруса, расположенных непрерывно вдоль линии, параллельной оси бруса. Малый отрезок этой материальной линии назовем малым продольным волокном. Брусья с прямолинейной осью называются балками, если они испытывают преимущественно деформацию изгиба. Рассмотрим изгиб балок постоянного по длине поперечного сечения. При этом ось Ог направим вдоль оси балки, а оси Ох и Оу совместим с главными центральными осями инерции поперечного сечения. Плоскости Охг и Оуг в этом случае называются главными центральными плоскостями инерции балки. Различают балки сплошного и тонкостенного поперечных сечений (см. 1.2).  [c.227]


Смотреть страницы где упоминается термин Ось бруса центральная : [c.256]    [c.119]    [c.118]    [c.68]    [c.158]    [c.271]    [c.8]    [c.156]    [c.36]    [c.28]    [c.121]   
Сопротивление материалов (1988) -- [ c.94 , c.101 ]

Сопротивление материалов (1970) -- [ c.107 ]

Сопротивление материалов Издание 6 (1979) -- [ c.82 ]



ПОИСК



Напряжения в непоперечных сечениях бруса при центральном растяжении-сжатии

ОСНОВЫ РАСЧЕТОВ НА ПРОЧНОСТЬ Основные деформации Растяжение и сжатие Центральное растяжение (сжатие) прямого бруса

Ось бруса

Ось центральная

Силы внутренние в брусьях критические для стержней тонкостенных центрально сжатых с открытым профилем — Расчетные

Устойчивость центрально сжатого симметричного стержня из двух брусьев на упругоподатливых поперечных связях и связях сдвига

Физическая сторона задачи центрального растяжения сжатия бруса

Центральное растяжение—сжатие бруса



© 2025 Mash-xxl.info Реклама на сайте