Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Родий Магнитные свойства

Вместо минимума здесь наблюдается монотонное уменьшение удельного сопротивления (см. рис. 5.30). В этом сплаве основной компонент, родий, имеет -зону, поэтому -состояния примеси (железа) не могут считаться локализованными. Однако флуктуации плотности спина усиливаются вблизи примесных атомов и магнитные свойства сплавов сходны со свойствами сплавов Кондо. Примесный вклад в удельное сопротивление аналогичен вкладу от эффекта Кондо, а положительный температурный коэффициент является главным образом следствием сходства между атомами железа и родия и, в частности, между их -зонами [11].  [c.196]


Материалы первого рода теряют свойства сверхпроводимости уже при слабых магнитных полях и относительно небольших плотностях тока. Сверхпроводники второго рода сохраняют сверхпроводящее состояние вплоть до высоких значений напряженности магнитного поля. Что касается величины критической плотности тока, то она тесно связана с наличием неоднородностей в структуре материала и примесей. Если таких искажений и примесей нет, то сверхпроводники второго рода относят к мягким (идеальным), при сильных магнитных полях они допускают небольшие плотности тока, Сверхпроводники второго рода с неоднородностями  [c.277]

Холодная деформация ведёт к изменению механических и физических свойств и к их анизотропии ввиду образования текстуры. С увеличением степени холодной деформации все показатели сопротивления деформации увеличиваются, а показатели пластичности и вязкости уменьшаются. Электропроводность изменяется особенно резко при малых степенях деформирования. Обычно холодная деформация ведёт к небольшому уменьшению электропроводности, но для некоторых металлов (молибден, никель, вольфрам) оно может быть значительным. Способность металлов к растворению различного рода реагентами и кислотами, как правило, увеличивается и иногда может стать весьма значительной. Магнитные свойства изменяются коэрцитивная сила и гистерезис увеличиваются, а магнитная проницаемость уменьшается. Отмечено также, что холодная деформация уменьшает теплопроводность, а также иногда изменяет цвет сплавов.  [c.270]

Следует отметить, что у, ельная мощность, развиваемая в стали в процессе нагрева, не остается постоянной. Изменение электрических и магнитных свойств нагреваемой стали и обусловленное этим нз.менение электрических параметров индуктора и режима высокочастотной установки приводит к изменению во времени удельной мощности. На рис. 6 приведены характерные зависимости такого рода. Они показывают, что значения удельной мощности в процессе индукционного нагрева могут изменяться в 2—3 раза.  [c.248]

Критические температуры фазовых переходов первого рода железного края диаграммы Fe—Мп были исследованы многочисленными авторами различными методами дилатометрическим, калориметрическим, рентгеновским, по изменению электрических и магнитных свойств, удельной теплоемкости, внутреннего трения и т. д. Одной из первых сводная диаграмма критических температур фазовых превращений железомарганцевых сплавов построена Шуманом [26] и приведена на рис. 6. Было показано изменение фазового состава в зависимости от содержания марганца и положение линий начала прямых превращений у->-а и y-ve (при охлаждении) и обратных,,а->-у и е- (при нагреве). Повышение содержания марганца приводит  [c.25]


Магнитные свойства. Молярная магнитная восприимчивость сплавов иридия с родием при О °К составляет  [c.602]

Магнитные материалы играют важную роль в развитии современной техники, являясь неотъемлемой частью многих приборов, машин и аппаратов. Их широко используют при изготовлении магнитоэлектрических измерительных приборов, гальванометров, магнитометров, осциллографов, счетчиков, спидометров, разного рода реле, репродукторов, электроннолучевых трубок, телефонных аппаратов, электрических машин и т. д. В соответствии с магнитными свойствами металлокерамические магнитные материалы можно разделить на следующие группы [2—4]  [c.427]

Термомагнитная обработка этих сплавов проводится в несколько стадий нагрев до температур гомогенизации ( отжига первого рода ) со скоростью 100 К/ч (температура гомогенизации превышает фазовую область a + Y на 50—100°), после выдержки — охлаждение от температуры гомогенизации со скоростью, предотвращающей выделение -фазы, до температуры начала (а—-распада, охлаждение в магнитном поле с критической скоростью ( морфологическая стадия распада), обеспечивающей оптимальную морфологию и геометрию продуктов распада а- и а -фаз, и, наконец, завершающий отпуск ( диффузионная стадия распада) для формирования оптимального состава фаз. В результате сплав приобретает максимальные магнитные свойства.  [c.175]

Чувствительность метода порошковой дефектоскопии зависит от многих факторов глубины залегания пороков, их размеров и ориентации относительно направления магнитного потока силы намагничивающего тока рода тока способа намагничивания размера частиц, ферромагнитного порошка и его магнитных свойств способа нанесения магнитного порошка (сухой или  [c.70]

Окончательный отпуск сильно повышает коэрцитивную силу и остаточную индукцию за счет снятия напряжений третьего рода, дальнейшего распада ( -твердого раствора и восстановления упорядоченной структуры в фазе 1 [5]. Максимальные магнитные свойства получаются вдоль направления прокатки или волочения.  [c.805]

Магнитные свойства вещества широко используются в практике для устройства электромагнитов. В отличие от постоянных магнитов магнетизм в электромагнитах создается и уничтожается в короткие промежутки времени включением и выключением электрического тока. Это позволяет широко применять электромагниты в электродвигателях, в генераторах, в телеграфии, в подъемных кранах, в различного рода реле, для получения ультразвуковых колебаний и для других целей.  [c.12]

Магнитные свойства сверхпроводников 2-го рода  [c.355]

В следующих двух параграфах мы изложим количественную теорию магнитных свойств сверхпроводников 2-го рода на основе уравнений теории Гинзбурга—Ландау [198]. Хотя эта теория справедлива, строго говоря, лишь вблизи 7 , но, как уже отмечалось раньше, все основные выводы применимы при любых температурах.  [c.358]

Довольно очевидно, что при низких температурах качественная картина магнитных свойств сверхпроводников та же, что и в окрестности температуры Т,.. Существует поверхностная энергия, которая может иметь разный знак. У сверхпроводников 1-го рода она положительна при поле происходит переход 1-го рода и имеется поле переохлаждения или У сверхпроводников 2-го рода поверхностная энергия сг , < О, превращение в нормальную фазу происходит путем перехода 2-го рода в поле Поэтому отношение  [c.380]

Монокристаллы — это однородные анизотропные вещества, во всем объеме которых атомы расположены регулярно, так что все вещество состоит из одинаковых периодически повторяющихся кристаллических ячеек. Согласно исследованиям свойств симметрии кристаллов, все кристаллы можно разделить на 32 класса, объединенные в 7 кристаллических систем (рис. 1.1.1). Кристаллические системы отличаются друг от друга формой единичной ячейки, определяемой отношением длин ребер а Ь с и тремя углами а, р, у, образуемыми кристаллическими плоскостями или гранями. Электрические и магнитные свойства кристаллов из разных систем и классов существенно отличаются, и это должно получить надлежащее разъяснение. Структурные дефекты разного рода (точечные дефекты, дислокации) нарушают упорядоченное расположение атомов и могут оказать значительное влияние на механические, электрические и магнитные свойства кристаллов.  [c.20]


Мельчайшие частицы этого порошка можно отделить друг от друга используя отличие свойств соединения металла от свойств пустой породы. Так некоторые виды соединений железа обладают магнитными свойствами и их легко отделить магнитной сепарацией. Если используется различная смачиваемость частиц руды и пустой породы, то используется метод флотации. В некоторых случаях применяется химическое отделение, основанное на растворении соединения извлекаемого элемента в различного рода растворителях. Естественно пустая порода в этом растворителе не должна растворяться.  [c.35]

Тепловой контакт. Цель работ, основанных на применении адиабатического размагничивания, состоит не только в изучении магнитных, тепловых и термодинамических свойств самих парамагнитных солей, но и в охлаждении с их помощью других материалов для исследования их свойств. В экспериментах такого рода соль представляет собой термостат, а часто также и термометр, и поэтому потребовалась разработка специальной методики для создания хорошего теплового контакта между солью и исследуемым веществом. Поскольку теплопередача осуществляется посредством тепловых колебаний решетки, можно ожидать, что эта задача по мере понижения температуры будет становиться все более и более сложной.  [c.559]

Вообще перспективными,с точки зрения практического использования, можно считать только те сверхпроводники, которые имеют высокие значения обеих критических величин - температуры и магнитной индукции. Такими свойствами обладают только сверхпроводники 2 рода (см. табл. 2.1), что дало возможность применять эти материалы как для производства сверхпроводниковых электромагнитов, создающих сильные магнитные поля, так и для других практических целей создания электрических машин, трансформаторов и других устройств малых массы и габаритов и с высоким к. п. д. кабельных линий для передачи весьма больших мощностей на произвольно большие расстояния волноводов с особо малым затуханием накопителей энергии и пр. Ряд устройств памяти и управления основывается на переходе сверхпроводника в сверхпроводящее или нормальное состояние при изменении магнитной индукции (или соответственно тока) или температуры.  [c.25]

Фазовые переходы I рода сопровождаются глобальной перестройкой структуры, чего система стремиться избежать. Одним из механизмов избежания (по крайней мере, временного) фазового перехода I рода является дис сипация энергии. В тяжелых нефтяных системах тепловая энергия при нагреве диссипирует путем образования парамагнитных соединений - асфальтено-вой фракции. Асфальтены по своей природе являются парамагнетиками, и тепловая энергия запасается в виде магнитной энергии их нескомпенсиро-ванных магнитных моментов. Поэтому мерность энергии углеводородного сырья возрастает выше D = 3. При возникновении парамагнитных соединений магнитные свойства системы в целом возрастают, что приводит к увеличению мерности субстанции D,. Структурных изменений не происходит, поэтому мерность формы остается неизменной (рис. 3.30, б).  [c.186]

Магнитные свойства. Не все сверхпроводники одинаково ведут себя в магнитном поле. По своим магнитным свойствам они делятся на сверхпроводники первого и второго рода. Эффект Мейс-снера -V Оксеифельда наблюдается у сверхпроводников первого рода, к которым относятся все элементарные сверхпроводники кроме ниобия. Сверхпроводники второго рода (ниобий, сверхпроводящие сплавы и химические соединения) не обнаруживают эффекта Мейсснера — Оксенфельда. Магнитное поле в них проникает, но весьма своеобразным образом.  [c.265]

Заключительные замечания. Хотя существует некоторое качественное представление о природе сверхпроводящего состояния, мы до сих пор не имеем строгой математической теории или даже физической картины различия между нормальным п сверхпроводящим состояниями. Сверхпроводник представляет собой упорядоченную фазу, в которой квантовые эффекты распространяются на большие расстояния в пространстве (порядка 10 см для чистых металлов). Эта большая протяженность волновых пакетов, несомненно, объясняет магнитные свойства сверхпроводников. Как и в случае других фазовых переходов второго рода, сверхпроводник, по-видимому, характеризуется некоторым параметром порядка, который обращается в нуль в точке перехода. Однако существуюпцге физические толкования параметра упорядочения неубедительны, и у нас нет никакого представления о том, как параметр упорядочения связан с реальными величинами.  [c.777]

Другое явление, связанное с образованием твердых растворов металлов, заключается в развитии сверхструктуры при тщательном отжиге сплавов. Это превращение типа порядок — беспорядок приводит к образованию так называемых интерметаллнческих соединений. Некоторые примеры перестройки кристаллической решетки подобного рода известны и среди хорошо изученных двойных сплавов платппы или палладия (наряду со спла-DOM родия с медью). Из физических основ металловедения известно, что образование сверхструктуры может происходить в тех случаях, когда условия благоприятствуют хорошей взаимной растворимости, но когда радиусы участвующих в превращении атомов сильно разнятся, хотя и не настолько, чтобы полностью помешать образованию растворов. Интересно отметить, что образование сверхструктуры происходит, по-видимому, в сплавах платины или палладия с некоторыми обычными металлами (табл. 8), хотя сведений о том, что это явление наблюдается в двойных системах, образованных самими платиновыми металлами, не имеется. Ясно, что обычные металлы (см. табл. 8) отличаются по величине своих атомных радиусов от платиновых мета.7Лов, серебра и золота. Некоторые из этих упорядоченных структур с обычными металлами, особенно с кобальтом, обладают интересными магнитными свойствами.  [c.497]


Для измерения давления применяются также датчик дацле-ния на основе эффекта ударного намагничивания и размагничивания. Датчики этого типа основаны на явлении изменения магнитных свойств материалов под действием давления и температуры в ударных волнах. При этом может происходить как потеря магнитных свойств, так и намагничивание. Изменение магнитных свойств в значительной мере зависит от состава ферромагнитного материала. Так, в [45] приведена зависимость изменения магнитных свойств от давления в ударной волне при исследовании углеродистого железа с содержанием 81 3.25 % по весу. На этой кривой отчетливо проявляется фазовый переход 1-го рода в железе, начало которого соответствует давлению 14.5 ГПа и окончание — -22.5 ГПа.  [c.276]

Различают два вида термической обработки магнитотвердых сплавов ЮНДК и ЮНДКТ термическую обработку на 7-фазу с целью облегчения контурной обработки магнитов (отжиг второго рода) и термомагнитную обработку, одна из стадий которой осуществляется в магнитном поле с целью придания сплаву оптимальных магнитных свойств.  [c.174]

Во-первых, можно построить всю диаграмму состояния по ряду горизонтальных разрезов. Для этого можно последовательно для ряда разных темп-р провести измерения любого физич, свойства сплавов разного состава. При переходе от сплава с одним типом строения к сплаву с другим строением любое физич, свойство изменится б. или м, резким скачком. На этом положении, как это особенно ярко отметил акад. Н. Курнаков, основан весь физико-химич. анализ. Между двумя соседними по концентрации сплавами, при переходе от одного из к-рых к другому обнарушивается скачкообразное изменение свойства, мы помещаем точку превращения Получив ряд таких точек для разных темп-р, соеди-няем их одной сплошной линией превращения. Подобного рода построение дано на фиг. 3, где горизонтали показывают исследованные температуры, точки на горизонталях соответствуют концентрациям исследованных сплавов, а крестики между двумя точками указывают, между какими сплавами было отмечено резкое изменение свойства. На одном горизонтальном разрезе может оказаться несколько точек превращения. В атом случав и на диаграмме состояния будет несколько линий. В качестве измеряемого физич, свойства можно взять твердость, временное сопротивление, сопротивление удару, электропроводность, магнитную индукцию, темп-рные коэф-ты указанных свойств, электрохимич, потенциал, плотность, коэф, линейного расширения и т, д. В аависимости от величины скачка в изменении того или иного свойства в момент изменения состояния, а также в зависимости от чувствительности метода измерения того или иного свойства в разных случаях оказывается наиболее выгодным привлечь различные свойства к исследованию изменений в строении. Особенно хорошие результаты обычно дают измерения электропроводности и ее темп-рного коэф-та, твердости и магнитных свойств. Нек-рые из методов измерения физич. свойств, как напр, метод электропроводности, м. б. применены к исследованию любых изменений состояния как в жидких, так и твердых металлах. Другие методы, как напр, метод твердости, по самому своему определению могут применяться только при исследовании превращений в твердом состоянии.  [c.378]

Выявляемость различных дефектов, как например, волосовин, шлифовочных трещин и др., также зависит от напряженности магнитного поля, создаваемого током в деталях, которое в свою очередь зависит от магнитны свойств деталей. На рис. 1-20 и 1-21 шриведе-но семейство графиков вероятностей выявления различных по роду дефектов в зависимости от напряженности магиитного поля.  [c.20]

Необходимость введения тензорных величин связана с различного рода анизотропией свойств физических макроскопических объектов. Тензор связывает две векторные величины, которые пропорциональны друг другу по модулю, но в силу анизотропии свойств объекта не совпадают друг с другом по направлению. В случае L и сэ решающую роль играет анизотропия формы тела (отсутствие определенной симметрии относительно осей xyz). В других случаях это может быть анизотропия, например, электрических или магнитных свойств вещества. Так, векторы поляризации вещества Р и напряженности электрического поля Е связаны тензором поляризуемости а Р = egaE (Sg — электрическая постоянная). Это означает, что в силу анизотропии электрических свойств вещество поляризуется не по полю , то есть не по полю смещаются положительные и отрицательные заряды в молекулах вещества. Примерами других, в общем случае тензорных величин являются диэлектрическая проницаемость и магнитная проницаемость вещества. Важную роль в механике играют тензоры деформаций и напряжений. С этими и другими тензорными величинами вы познакомитесь при изучении соответствующих разделов курса общей физики.  [c.24]

Оценка Нс. В сверхпроводниках И рода вихревое состояние начинает формироваться в поле H i- Величина Нс меньше, чем термодинамическое критическое поле, определяемое из равенства нЦ8п разности свободной энергии в нормальном и сверхпроводящем состояниях в нулево.м магнитном поле. Эта разность определяется калориметрическими измерениями, так как теперь скачка магнитных свойств при Не иет (см. рис. 12.66)..  [c.458]

Главнейшим недостатком магнитного С. к. является зависимость его показаний от магнитного состояния корабельного корпуса. Под действием судового железа, намагничиваемого полем земли, магнитная стрелка устанавливается в плоскости компасного меридиана, составляющего с плоскостью магнитного меридиана угол, называемый девиацией (<54. В магнитном отношении различают два вида железа твердое и мягкое. Твердое железо трудно намагничивается, но сохраняет полученные магнитные свойства довольно долгое время мягкое железо обладает обратными свойствами—легко намагничивается, но столь же легко и теряет свои магнитные свойства по удалении из магнитного поля. Учет влияния судового железа, которое бывает двух родов и в целом представляет собой тело неопределенной формы, в математической форме возможен пока только лишь для частного случая нахождения железного бруска в однородном и слабом магнитном поле (таким магнитным полем и является земное). Именно для этого случая французский геометр Пуассон дал гипотезу, сводящуюся к двум положениям 1) намагничивание железной массы произвольной формы пропорционально намагничивающей силе, если эта сила постоянного в данной массе направления, и 2) получающаяся магнитная ось имеет в данной массе постоянное иаправление, не совпадающее в общем случае с направлением намагничивающей силы. Возьмем прямоугольную систему координат с началом в центре магнитной стрелки и разложим силу магнетизма Т на три составляющие X, У и 2. Каждая из этих составляющих будет намагничивать мягкое железо корабля, к-рое следовательно начнет действовать на северный конец магнитной стрелки силами тХ, пУ и lZ, имеюгцими по Пуассону постоянное относительно корабля направление и пропорциональными силам X, У и Я. Разложив силы тХ, пУ и 1Е, а также силу К (постоянную по величине и направлению) от магнетизма твердого железа (а также и магнетизма мягкого железа, вызываемого им) по трем избранным осям и затем просуммировав их по каждой оси в отдельности, получим ур-ия Пуассона  [c.139]

Достижения в теории ферромагнетизма изложены в ряде книг и обзоров, из которых в первую очередь необходимо отметить фундаментальные монографии советских уч-адых (Н. С. Акулов, Ферромагнетизм, ОНТИ, 1939 г. С. В. Вонсовский и Я. С. Шур, Ферромагнетизм, ГТТИ, 1948 г.). Следует, однако, указать, что вследствие широкого диапазона охватываемого материала в этих монографиях, а также имеющихся обзорах, естественно, не все вопросы могли быть изложены с достаточной полнотой. К такого рода вопросам необходимо отнести обширный круг явлений, связанных с влиянием ферромагнитного состояния и ферромагнитных процессов на различные физические (не магнитные) свойства вещества. К ним принадлежат такие явления, как магнитострикция, гальваномагнитные и термомагнитные эффекты, аномалии в тепловых, электрических, упругих свойствах ферромагнитных металлов.  [c.6]


В разд. 5.1 отмечалось, что добавка небольщого количества магнитной примеси к некоторым металлам приводит к образованию локального магнитного момента и как следствие к появлению минимума сопротивления при низких температурах. Изучив свойства разбавленных сплавов железа с родием, Коулз [43] высказал предположение, что эти сплавы могут оказаться полезными при создании термометров сопротивления. Вместо того чтобы задать минимум сопротивления, добавка  [c.231]

Такой вывод подкрепляется данными изучения физических свойств и рентгеноструктурного анализа устойчивость искажений II рода, вызванных вЬлочением металла, выше при малых степенях обжатия, чем при больших изменение магнитных и электрических (электропроводность) свойств образцов, обжатых до 25%, испытывает аномалию, по-видимому, связанную с перераспределением дислокаций в ячеистую (или сеточную) структуру.  [c.76]

Применение метода МСР. Исследования можно разделить на 2 группы изучение явлений, где анализируется поведение в веществе самого положит, мюона р+, рассматриваемого как лёгкий протон изучение проблем, где р рассматривается как простейший зонд в исследуемом веществе, сочетающий свойства пробного заряда и элементарного магнитометра. Часто в одном эксперименте оба аспекта тесно переплетаются. Примеры исследований 1-й группы — эксперименты по изучению электронной структуры мюония в полупроводниках и диффузии мюонов в металлах. Эти эксперименты дополняют исследования поведения водорода в материалах, позволяя получать наглядную картину процессов, в к-рых проявляется квантовая природа поведения лёгкой примесной частицы в тяжёлой кристаллич. решётке. Примерами исследований 2-й группы может служить изучение смешанного состояния сверхпроводников 2-го рода и фазовых переходов с изменением магн. порядка (см. Магнитный фазовый переход).  [c.226]

ПРОМЕЖУТОЧНОЕ СОСТОЙНИЕ сверхпроводников — возникает в образце из сверхпроводника первого рода под действием внеш. магн. поля или магн. поля тока, протекающего по образцу. П. с. реализуется, когда напряжённость магн. поля Н в определ. точках поверхности образца достигает величины критического магнитного поля Яд, однако при полной утрате сверхпроводящих свойств (в тех же внеш. условиях) невозможно выполнить условие Н Ы,. для всего образца. П. с. представляет собой с.месь сверхпроводящих и нормальных доменов, характерный размер к-рых много меньше размеров образца. Термин П. с. введён Р. Пайерлсом (R. Peierls, 1936), структура П. с. была выяснена Л. Д. Ландау в 1937. В неоднородном внеш. поле в образце могут одноврем. существовать большие области сверхпроводящей и нормальной фаз. Они обязательно разделены веществом в П, с. Под действием тока, протекающего по образцу, может осуществляться т. н. динамич, П. с., в к-ром границы раздела непрерывно движутся через образец (со скоростями 10" — 10" см/с), зарождаясь на одной его поверхности и исчезая на другой.  [c.143]

Лит. Сапожков И. А., Речевой сигнал в кибернетике н связи, М., 1963 Факт Г., Акустическая теория речеобразо-вания, пер. с англ., М., 1964 Фланаган Д. Л., Анализ, синтез и восприятие речи, пер. с англ., М., 1968 Физиология речи. Восприятие речи человеком. Л., 1976. М. А. Сапожков. РЕШЁТКА ВИХРЕЙ АБРИКОСОВА — двумерная решётка квантованных вихрей в сверхпроводниках второго рода (СВР). Теоретически предложена А. А. Абрикосовым (1957) для объяснения магн. свойств СВР. Вихри, образующие Р. в. А., характеризуются остовом с радиусом порядка длины когерентности В центре остова (на оси вихря) плотность сверхпроводящих электронов равна нулю. Вокруг остова на расстояниях порядка глубины проникновения магн. поля А, циркулирует сверхпроводяшдй ток, распределённый так, что создаваемый им магн. поток равен кванту магн. потока (см. Квантование магнитного потока). Схематич. поведение магн. поля и плотности сверхпроводящих электронов изолиров. вихря изображено на рис. 1. В интервале полей // 1 < Я < Яд2 (см. Критическое магнитное поле) такие вихри в результате взаимодействия  [c.389]


Смотреть страницы где упоминается термин Родий Магнитные свойства : [c.471]    [c.53]    [c.125]    [c.388]    [c.497]    [c.550]    [c.182]    [c.208]    [c.103]    [c.113]    [c.591]    [c.468]    [c.19]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.282 ]



ПОИСК



I рода

I рода II рода

Магнитные свойства сверхпроводников 2-го рода (качественная картина)

Магнитные свойства сверхпроводников 2-го рода в случае Поверхностная сверхпроводимость

Родан

Родиан

Родий

Родий Свойства

Родит



© 2025 Mash-xxl.info Реклама на сайте