Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СВЕДЕНИЯ ИЗ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ

СВЕДЕНИЯ ИЗ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ  [c.16]

Сведения из линейной теории упругости  [c.18]

Сведение задач плоской теории упругости к задачам линейного сопряжения является одним из эффективных методов решения этих задач (особенно смешанных задач).  [c.53]

На примере цилиндрической оболочки мы убедились в том, что при плавно меняющейся нагрузке в большей части оболочки можно пренебречь изгибом и напряжениями от изгибающих моментов но сравнению с равномерно распределенными по толщине напряжениями от усилий Гар. Моментное напряженное состояние реализуется только в зоне краевого эффекта, протяженность кото-рой оценивается характерным линейным размером к = УНк. Для оболочки положительной гауссовой кривизны этот результат носит совершенно общий характер, схема расчета таких оболочек строится следующим образом. Сначала находится усилие в оболочке, которую представляют как тонкую, нерастяжимую мембрану, совершенно не сопротивляющуюся изгибу. Эта задача решается с помощью одних только уравнений статики и, собственно говоря, не относится к теории упругости. Соответствующая теория называется безмоментной теорией оболочек. Решение, найденное по безмоментной теории, как правило, не позволяет удовлетворить всем граничным условиям, поэтому вблизи границы рассматривается краевой эффект, связанный с изгибом. Ввиду малости области краевого эффекта, уравнения теории оболочек для этой области принимают относительно простую форму. Для вывода уравнений безмоментной теории нам понадобятся некоторые сведения из теории поверхностей, которые предполагаются известными и сообщаются для справки.  [c.423]


Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

Замечание. В [15] указан способ представления общего решения однородной системы п линейных дифференциальных уравнений с постоянными коэффициентами в виде дифференциального оператора, примененного к п функциям ф , каждая из которых определяется из своего более простого, чем исходные, дифференциального уравнения. Для сведения краевой задачи к ИУ по границе можно использовать потенциалы , соответствующие дифференциальным уравнениям для функций (pi. В теории упругости подобный способ применяется в [16].  [c.187]

Вопросам усреднения уравнений с частными производными и их приложениям посвящена обширная литература. Настоящая книга почти не имеет пересечений с другими монографиями, в которых излагаются задачи усреднения дифференциальных операторов. Особое внимание в ней обращено на задачи, связанные с линейной стационарной системой теории упругости. Поэтому для удобства читателя первая глава книги содержит материал, относящийся к исследованию стационарной системы теории упругости. В ней рассматриваются вопросы существования и единственности решений основных краевых задач теории упругости, неравенства Корна и их обобщения, априорные оценки решений и их свойства, краевые задачи в так называемых перфорированных областях и свойства их решений, а также приводятся некоторые вспомогательные сведения из функционального анализа. Все эти результаты используются в последующих главах, многие из них излагаются впервые.  [c.6]


Данная глава включает шесть разделов, два приложения и список литературы. Основные сведения о распространении механических возмущений приведены в приложении А. Некоторые результаты, относящиеся к динамике линейно упругих тел, обсуждаются в приложении Б. В разд. II дается обзор теории эффективных модулей для слоистых сред и сред, армированных волокнами. Несколько более подробно рассматривается слоистая среда, состоящая из чередующихся слоев двух изотропных однородных материалов здесь находятся выражения для эффективных модулей через упругие постоянные материала и толщины слоев. Построенная теория используется для нахождения постоянных фазовых скоростей продольных и поперечных волн в направлении, параллельном слоям. После этого исследуются пределы применимости теории эффективных модулей для изучения волн в слоистой среде. Соответствующие ограничения устанавливаются сравнением частот и фазовых скоростей с точными значениями, найденными в разд. III.  [c.358]

В. И. Моссаковский и М. Т. Рыбка (1964, 1965) рассмотрели упомянутую выше задачу Р. А. Зака для случая неоднородного хрупкого материала, состоящего из двух склеенных полупространств с различными упругими свойствами. В плоскости склейки имеется круглая в плане трещина под действием однородных напряжений, приложенных на бесконечности и перпендикулярных границе раздела полупространств. С помощью задач теории потенциала авторы получают решение сведением проблемы к линейной краевой задаче теории аналитических функций.  [c.388]

Во второй части книги мы рассмотрим акустические волны в твердых телах, характеризующихся различными физическими свойствами — упругой анизотропией, пьезоэффектом, наличием носителей электрического заряда, магнитоупругостью, внутренней структурой и т. д. Однако, прежде чем переходить к изучению такого рода сложных систем, естественно ознакомиться с наиболее простым случаем — классическим идеально упругим изотрот ым твердым телом (диэлектриком). Под идеально упругим будем подразумевать твердое тело, в котором отсутствуют пластические деформации. Иными словами, при снятии силовой нагрузки тело приходит в первоначальное состояние (отсутствие механического гистерезиса). Феноменологически такое тело может быть описано в рамках теории упругости — хорошо разработанного раздела механики сплошных сред (см., например, 1]). Ниже приведены основные сведения из теории упругости, необходимые для понимания дальнейшего изложения. Несмотря на то, что в настоящей главе мы ограничимся рассмотрением волн бесконечно малой амплитуды в рамках линейной акустики, Б целях методического единства здесь приведены и некоторые сведения из нелинейной теории упругости изотропных твердых тел.  [c.188]

Основные соотношения классической теории упругости Линейиая классическая теория базируется на ряде гипотез, основными из которых являются предположения о сведении системы сил, действующих на элементарную площадку, только к рав недействующей (отсутствие моментов), о малости градиентов перемещений (линей пая связь между деформациями и перемещениями), об идеальной упругости материала (линейная связь между напряжениями и деформациями)  [c.137]


Смотреть страницы где упоминается термин СВЕДЕНИЯ ИЗ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ : [c.5]    [c.90]   
Смотреть главы в:

Методы граничных элементов в механике твердого тела  -> СВЕДЕНИЯ ИЗ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ



ПОИСК



Линейная теория

ТЕОРИЯ УПРУГОСТИ Линейная теория упругости

Теория упругости

Теория упругости линейная

Упругости линейная

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте