Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Граничные условия в задачах статики оболочек

ГРАНИЧНЫЕ УСЛОВИЯ В ЗАДАЧАХ СТАТИКИ ОБОЛОЧЕК  [c.54]

Схема решения линейной задачи прочности, основанная на приведенных зависимостях, такова. Пусть рассматриваемая оболочка собрана из m различных армированных волокнами слоев и нагружена системой внешних сил, интенсивности которых пропорциональны одному скалярному параметру Р. В силу линейности дифференциальных уравнений и граничных условий соответствующей краевой задачи статики оболочки средние напряжения средние  [c.37]


На примере цилиндрической оболочки мы убедились в том, что при плавно меняющейся нагрузке в большей части оболочки можно пренебречь изгибом и напряжениями от изгибающих моментов но сравнению с равномерно распределенными по толщине напряжениями от усилий Гар. Моментное напряженное состояние реализуется только в зоне краевого эффекта, протяженность кото-рой оценивается характерным линейным размером к = УНк. Для оболочки положительной гауссовой кривизны этот результат носит совершенно общий характер, схема расчета таких оболочек строится следующим образом. Сначала находится усилие в оболочке, которую представляют как тонкую, нерастяжимую мембрану, совершенно не сопротивляющуюся изгибу. Эта задача решается с помощью одних только уравнений статики и, собственно говоря, не относится к теории упругости. Соответствующая теория называется безмоментной теорией оболочек. Решение, найденное по безмоментной теории, как правило, не позволяет удовлетворить всем граничным условиям, поэтому вблизи границы рассматривается краевой эффект, связанный с изгибом. Ввиду малости области краевого эффекта, уравнения теории оболочек для этой области принимают относительно простую форму. Для вывода уравнений безмоментной теории нам понадобятся некоторые сведения из теории поверхностей, которые предполагаются известными и сообщаются для справки.  [c.423]

Другой пример дают задачи расчета многосвязных оболочек, разобранные в гл. 5. Функционал Кастильяно для многосвязной оболочки при статических граничных условиях имеет в качестве одного из условий стационарности уравнения неразрывности контура отверстия-, его аналог — функционал Лагранжа — имеет в качестве условий стационарности уравнения равновесия контура отверстия, но для задачи с деформационными граничными условиями. Этот пример показывает, что вариационная форма статико-геометрической аналогии позволяет глубже увидеть связь уравнений и найти ее между соотношениями, которые раньше казались несвязанными.  [c.135]

Ниже для функционалов Лагранжа и Кастильяно разобрано несколько характерных примеров, которые дают представление об общей методике учета сложных граничных условий при вариационной постановке задач теории упругости и теории оболочек. Для других функционалов можно использовать эту методику, а также теорию преобразования вариационных проблем с функционалами Лагранжа и Кастильяно в качестве исходных пунктов, а для теории оболочек — статико-геометрическую аналогию в вариационной форме (гл. 4, 7).  [c.147]


В настоящем параграфе рассмотрен класс осесимметричных краевых задач статики слоистых анизотропных оболочек вращения. Сформулированы и приведены к матричной форме система обыкновенных дифференциальных уравнений, описывающая осесимметричное напряженно-деформированное состояние таких оболочек, и соответствующая ей система граничных условий.  [c.75]

Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]


Смотреть страницы где упоминается термин Граничные условия в задачах статики оболочек : [c.135]    [c.197]   
Смотреть главы в:

Линейная теория тонких оболочек  -> Граничные условия в задачах статики оболочек



ПОИСК



Граничные условия

Граничные условия для оболочки

Задача об оболочке

Задачи статики

Статика



© 2025 Mash-xxl.info Реклама на сайте