Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вертолет с бесшарнирным несущим винтом

Вертолет с бесшарнирным несущим винтом имеет большее демпфирование по тангажу и менее неустойчивое колебательное движение, чем вертолет с шарнирным винтом. С учетом более высокой эффективности управления задача пилотирования вертолета упрощается. Однако для обеспечения устойчивости все же требуется замыкание контура управления, которое осуществляет летчик или автоматическая система. Зная полюсы и нули вертолета, можно получить корневые годографы для различных обратных связей. Корневые годографы для вертолета с бесшарнирным винтом или с шарнирным, имеющим относ ГШ, подобны годографам, приведенным в предыдущем разделе, однако количественные различия в корнях существенно влияют на требуемые коэффициенты усиления и постоянные времени форсирования и запаздывания обратных связей. При существенно большем демпфировании обратная связь только по углу тангажа достаточна для обеспечения устойчивости колебательного движения, однако она неудовлетворительна при наличии любого существенного запаздывания. Таким образом, для удовлетворительных характеристик замкнутой системы управления вновь требуется обратная связь по углу и угловой скорости, но с меньшими постоянной времени форсирования и коэффициентом усиления (из-за повышенных демпфирования и эффективности управления), что упрощает задачу пилотирования. Нуль форсирования должен лежать справа от действительного корня  [c.729]


ВЕРТОЛЕТ С БЕСШАРНИРНЫМ НЕСУЩИМ ВИНТОМ  [c.773]

Для вертолета с бесшарнирным несущим винтом при высокой скорости полета (v = 1,2, у = 5 и = 0,8) с системой обратной связи и без нее были вычислены корни и переходный процесс изменения положения фюзеляжа при ступенчатом отклонении управления. Рассматривались следующие случаи полная система квазистатическая аппроксимация несущего винта аппроксимация первого порядка, в которой опущены члены с ускорениями махового движения, а члены со скоростями оставлены. Полная система содержала периодические коэффициенты, обусловленные аэродинамикой несущего винта при полете вперед. Обнаружено, что для анализа устойчивости несущего винта необходимо принимать во внимание периодические коэффициенты, но аппроксимация с постоянными коэффициентами также дает хорошие результаты для корней и переходного процесса даже при больших i. Квазистатическая модель по результатам этой работы, видимо, адекватно представляет динамику, так как дает почти те же корни и переходный процесс, что и полная модель.  [c.776]

Управление несущим винтом осуществляется изменением циклического и общего шагов. Изменение общего шага соответствует изменению среднего угла атаки лопастей и величины силы тяги. Изменение циклического шага представляет собой изменение угла установки лопасти с частотой оборотов, что приводит к наклону плоскости концов лопастей. При этом вместе с плоскостью концов лопастей наклоняется вектор тяги, создавая момент относительно центра масс вертолета, лежащего ниже втулки несущего винта. На бесшарнирном несущем винте и винте с разносом ГШ лопастей одновременно с наклоном плоскости концов лопастей создается момент на втулке. Таким образом, изменение общего и циклического шагов позволяет эффективно управлять величиной и направлением вектора тяги несущего винта. При работе несущего винта с постоянной угловой скоростью для изменения тяги необходим механизм общего шага. Следовательно, введение механизма изменения циклического шага ненамного увеличивает механическую сложность несущего винта. Для изменения шага лопастей с частотой оборотов требуется автомат перекоса той или иной конструкции (см. разд. 5.1).  [c.700]

Бесшарнирные несущие винты. Рассмотрим несущий винт с относом ГШ или бесшарнирный винт. В обоих случаях собственная частота движения лопасти в плоскости взмаха будет больше частоты вращения винта (v > 1). Основным следствием этого будет момент на втулке, связанный с наклоном плоскости концов лопастей, что сильно увеличивает способность несущего винта создавать моменты относительно центра масс вертолета. При этом также увеличивается взаимосвязь продольного и поперечного движений, но здесь рассматривается только продольное движение. Относ ГШ на шарнирном винте не изменяет коренным образом характер динамики вертолета, хотя с появлением дополнительных моментов на втулке происходит существенное улучшение характеристик управляемости.  [c.727]


Вертолет с довольно большим стабилизатором может быть в целом статически устойчив по углу атаки. В этом случае при полете вперед действительные корни движений по тангажу и вертикали переходят в колебательные с коротким периодом и высоким демпфированием, а длиннопериодические корни обычно перемещаются в левую полуплоскость с небольшим увеличением периода и демпфирования. Таким образом, динамика вертолета со стабилизатором при полете вперед характеризуется короткопериодическим колебательным движением, обусловленным демпфированием по вертикали и тангажу, и длиннопериодическим колебательным движением, устойчивость которого обусловлена статической устойчивостью по углу атаки. Стабилизатор, достаточно большой для того, чтобы обеспечить высокий уровень статической устойчивости, не всегда приемлем на практике, особенно при бесшарнирном несущем винте. Его эффективность снижается на малых скоростях вследствие влияния винта и фюзеляжа. Тем не менее он настолько улучшает характеристики управляемости, что большинство одновинтовых вертолетов снабжается стабилизатором.  [c.755]

Наиболее распространена схема одновинтового вертолета с рулевым винтом — небольшим вспомогательным винтом, используемым для уравновешивания реактивного крутящего момента несущего винта и для путевого управления. Рулевой винт устанавливается вертикально на хвостовой балке его тяга направлена влево, если несущий винт вращается по часовой стрелке. Плечо силы тяги рулевого винта относительно оси вала несущего винта обычно несколько больше радиуса последнего. Управление по тангажу и крену в этой схеме обеспечивается наклоном вектора силы тяги несущего винта посредством изменения циклического шага управление по высоте — изменением величины тяги несущего винта посредством изменения его общего шага путевое управление — изменением величины тяги рулевого винта посредством изменения его общего шага. Эта схема проста и требует одного механизма управления несущим винтом и одной трансмиссии для его привода. Рулевой винт обеспечивает хорошую путевую управляемость, но требует затраты мощности для уравновешивания аэродинамического крутящего момента, что увеличивает суммарную потребную мощность вертолета на несколько процентов. Недостатком одновинтовой схемы является обычно небольшой диапазон допустимых центровок он увеличивается при использовании бесшарнирного винта. Кроме того, рулевой винт, если он расположен не очень высоко на хвостовой балке, представляет некоторую опасность для наземного персонала в этом случае не исключена также возможность удара рулевого винта о землю при эксплуатации вертолета. Рулевой винт работает как вертикальное и горизонтальное оперение в потоке, возмущенном несущим винтом и фюзеляжем, что снижает его аэродинамическую эффективность и увеличивает нагрузки и вибрации. Одновинтовая схема (с рулевым винтом) наиболее подходит для вертолетов малых и средних размеров ).  [c.298]

К нему следует добавить некоторый момент сил в плоскости вращения, вызванных несовпадением вектора силы тяги с осью конуса лопастей. В случае шарнирного несущего винта без относа ГШ моменты на втулке отсутствуют и все моменты относительно центра масс возникают при наклоне вектора силы тяги. На таком вертолете следует избегать режимов полета с низкими перегрузками, когда управление и демпфирование от винта могут исчезнуть, поскольку они пропорциональны силе тяги. Способность шарнирного винта создавать управляющие моменты может быть примерно удвоена путем применения относа ГШ, причем обусловленная им часть момента не зависит от величины силы тяги. В случае бесшарнирного винта момент на втулке в 3—4 раза превышает момент от наклона вектора силы тяги. Таким образом, бесшарнирный винт обеспечивает намного более высокую эффективность управления и демпфирования, чем шарнирный, но одновременно он более чувствителен к порывам ветра (см. также разд. 5.13).  [c.579]

V = 8, высота втулки h = 0,3, коэффициент заполнения а = 0,1 и нагрузка на лопасть Ст/а = 0,1. Полагая радиус несущего винта равным Эми окружную скорость лопасти 200 м/с, получаем = 0,0022 и ЛТ =127, при радиусе инерции /гу = 0,1 имеем /у =12,7. Полюсы и нули передаточных функций найдены для шарнирного (v=l) и бесшарнирного (v = = 1,15) несущих винтов. Вертикальное движение этого вертолета имеет один корень s = —0,012 (при С = 0,7).  [c.731]


В работе [М. 121] проведено сравнение корней продольного движения вертолета, найденных с учетом динамики несущего винта и с использованием низкочастотной модели. Для вертолета на режиме висения учитывались четыре степени свободы продольная скорость хв, угол тангажа 0в, продольный Pi и поперечный Pis наклоны конуса лопастей. Квазистатическая аппроксимация позволила снизить порядок модели до двух степеней свободы, Хв и 0в- В результате сравнения корней продольного движения вертолета с учетом и без учета степеней свободы несущего винта для шарнирного и бесшарнирного винтов, а также сравнения частотных характеристик до частоты (o = 0,14Q был сделан вывод о том, что квазистатическая аппроксимация хорошо описывает несущий винт при анализе динамики полета.  [c.775]

Таким образом, система управления с обратной связью по моменту на втулке уменьшает прямую реакцию несущего винта на отклонение управления, движения вала и порывы ветра. Парирование влияния порывов ветра и в общем уменьшение устой-чивости по скорости желательны. При полете вперед также уменьшается неустойчивость несущего винта по углу атаки, что существенно улучшает продольную управляемость вертолета. Реакция на непосредственное изменение циклического шага уменьшена, но винтом можно управлять, прикладывая моменты к гироскопу. Обратная связь по моменту на втулке уменьшает демпфирование угловых перемещений несущего винта, но она также уменьшает реакцию на угловую скорость поворота вала, которая связывает продольное и поперечное движения. При наличии демпфирования во вращающейся системе координат гироскоп создает обратную связь по угловым скоростям тангажа и крена, заменяющую демпфирование несущего винта. Характеристики винта с обратной связью по моменту на втулке подобны характеристикам бесшарнирного винта. Обратная связь уменьшает реакцию винта на внешние возмущения и сами силы на несущем винте, обусловленные движением вертолета (а также устойчивость по скорости и неустойчивость по углу атаки), но обеспечивает демпфирование угловых перемещений, заменяющее демпфирование от несущего винта. Если обратная связь по моментам реализуется на бесшарнирном винте, то основным дополнительным соображением является выбор угла опережения управления в контуре обратной связи. Угол должен быть таким, чтобы продольное и поперечное движения вертолета и реакция на отклонение управления не были связанными. При большом коэффициенте усиления, желательном для улучшения характеристик системы, может оказаться недостаточным учет только низкочастотных (т. е. статических) реакций винта и гироскопа. Более того, при высоком коэффициенте усиления  [c.781]

Времена затухания вдвое ti/2 — 0,7 и 2,7 с, а колебательное движение имеет период Г = 22 с и время удвоения амплитуды ta = = 3,2 с. В случае вертолета с шарнирным винтом и стабилизатором короткопериодическое движение имеет параметры Г = 5,8 с и ti/o = 1,4 с, а короткопериодическое — 7 = 40 с и tij2 = 21 с. Таким образом, вертолет со стабилизатором при полете вперед имеет хорошо демпфированное короткопериодическое движение и слабо устойчивое длиннопериодическое. Заметим, что короткопериодическое движение представляет собой в основном связанные движения по 0в и is при незначительной продольной скорости, как это предполагалось в анализе короткопериодического движения. Для вертолета с бесшарнирным несущим винтом корни продольного движения при полете вперед изменяются аналогичным образом, хотя в этом случае для компенсации более сильной неустойчивости по углу атаки от несущего винта требуется стабилизатор больших размеров.  [c.764]

Земным резонансом называют динамическую неустойчивость, проистекающую из-за взаимосвязи качания лопасти с движением втулки в плоскости вращения. Эта неустойчивость характеризуется совпадением собственной частоты качания лопасти (точнее, низшей частоты качания в невращающейся системе координат) с собственной частотой колебаний упругой опоры несущего винта. Поскольку собственная частота качания зависит от частоты вращения несущего винта, такому резонансу соответствует некоторый критический диапазон оборотов несущего винта. Неустойчивость возможна, если собственная частота качания лопасти во вращающейся системе коорди-. нат VJ ниже Q, как это имеет место для шарнирных и бес-шарнирных несущих винтов с малой жесткостью в плоскости вращения. У вертолета с шарнирным несущим винтом земной резонанс возникает обычно, когда шасси касается земли (откуда и название этого явления). Иногда такая неустойчивость может появиться и в воздухе, особенно у бесшарнирного винта в этом случае ее называют воздушным резонансом.  [c.612]

ТОГО, при полете вперед периодически изменяются с периодом 2n/Q. Это создает серьезную проблему для конструкторов необходимо каким-то способом уменьшить изгибающие моменты в комлевых частях и снизить напряжения в лопастях до допустимого уровня. Если лопасти жесткие, как у пропеллера, то все аэродинамические нагрузки воспринимает конструкция. У гибких же лопастей под действием аэродинамических сил возникают значительные изгибные колебания, в результате которых аэродинамические силы могут изменяться так, что нагрузка лопастей существенно снизится. Таким образом, при полете вперед азимутальное изменение подъемной силы лопасти вызывает ее периодическое движение с периодом 2n/Q в плоскости, нормальной к плоскости диска (плоскости взмаха). Это движение называют маховым. С учетом инерционных и аэродинамических сил, обусловленных маховым движением, результирующие нагрузки лопасти в комлевой части и момент крена, передающийся на фюзеляж, существенно уменьшаются. Обычно для снижения нагрузок втулки несущих винтов снабжают горизонтальными шарнирами (ГШ). При маховом движении лопасть поворачивается вокруг оси ГШ как твердое тело (см. рис. 1.4). Так как на оси ГШ момент равен нулю, на фюзеляж он вообще не может передаться (если относ оси ГШ от оси вращения равен нулю), а изгибающие моменты в комлевой части лопасти должны быть малы. Несущий винт, у которого имеются горизонтальные шарниры, называют шарнирным винтом. В последнее время на вертолетах с успехом применяют несущие винты, не имеющие ГШ и называемые беешарнирными. При использовании высококачественных современных материалов комлевую часть лопасти можно сделать прочной и в то же время достаточно гибкой, чтобы обеспечить маховое движение, которое снимает большую часть нагрузок в комле лопасти. Вследствие значительных центробежных сил, действующих на лопасти, маховые движения у шарнирных и бесшарнирных винтов весьма сходны. Естественно, нагрузка комлевой части лопасти у бесшарнирных винтов выше, чем у шарнирных, а увеличение момента, передаваемого на втулку, оказывает значительное влияние на характеристики управляемости вертолета. В целом маховое движение лопастей уменьшает асимметрию в распределении подъемной силы по диску винта при полете вперед. Поэтому учет махового движения имеет принципиальное значение в исследовании аэродинамических характеристик несущего винта при полете вперед.  [c.155]


Традиционно под термином флаттер понимают аэроупру-гую неустойчивость, возникающую при совместных изгибно-крутильных колебаниях крыла. Применительно к вертолету флаттер относится к совместным маховому движению и крутильным колебаниям лопасти несущего винта. Часто этот термин распространяют на все случаи аэроупрУгой неустойчивости несущего винта, но в данном разделе будут рассмотрены только маховые и крутильные колебания. Классическая постановка задачи включает две степени свободы — взмах и поворот в ОШ жесткой лопасти шарнирного винта. Поскольку в системе управления лопастью наименьшую жесткость при кручении имеет проводка управления, указанная модель лопасти хорошо представляет ее динамику. Будем учитывать только основной тон махового движения с собственной частотой vp. Подробный анализ флаттера бесшарнирного винта обычно требует дополнительного учета движения лопасти в плоскости вращения. Вращение вызывает ряд явлений, которые делают флаттер лопасти сильно отличающимся от флаттера крыла. Центробежные силы связывают движение взмаха и кручение, если центр масс сечения не совпадает с осью ОШ. Повторное влияние вихревой системы винта на аэродинамические силы лопасти и их периодичность при полете вперед также имеет важное значение.  [c.585]

В классическом анализе земного резонанса учитываются четыре степени свободы продольное и поперечное перемещения втулки несущего винта в плоскости вращения и две степени свободы циклического качания лопасти. Фактические колебания вертолета на шасси сопровождаются также наклоном вала винта, однако перемещение втулки в плоскости вращения является в данном случае доминирующим фактором. Аэродинамические силы несущего винта слабо влияют на земной резонанс по сравнению с упругими и инерционными силами по этой причине в анализе их не учитывают. Такая модель дает удовлетворительное описание основных характеристик земного резонанса и даже хорошие численные результаты, особенно для шарнирных несущих винтов. В некоторых случаях, в частности для бесшарнирных винтов, требуется более сложная модель, учитывающая аэродинамику несущего винта и маховое движение лопастей и более точно описывающая динамику опоры. Основы анализа земного резонанса заложены работой Коулмена и Фейнголда [С.77].  [c.613]

Нагрузки лопастей, втулки и проводки управления, создаваемые аэродинамическими и инерционными силами несущего винта, необходимо знать для проектирования элементов конструкции в соответствии с существующими нормами статической и усталостной прочности. Для проектирования лопасти требуется знание напряжений в элементах ее конструкции, а теория упругой балки оперирует только с изгибающими и крутящими моментами в сечении лопасти. Для шарнирной лопасти критическим обычно является изгибающий момент в плоскости взмаха в сечении, находящемся вблизи середины лопасти. Для бесшарнирного винта критический изгибающий момент имеет место в комлевом сечении. Суммарные реакции в комлевом сечении определяют нагрз зки на втулку. Установочные моменты лопастей обусловливают нагрузки в проводке управления, которые часто являются фактором, ограничивающим предельные. режимы полета вертолета. Конструктора обычно интересуют периодические или близкие к ним нагрузки на установившихся режимах полета и при маневрах. Ввиду того что периодические изменения аэродинамических параметров вызывают большие периодические нагрузки на лопастях, втулке и проводке управления, анализ усталостной прочности является важнейшим элементом проектирования несущего винта. Усталостная прочность конструкции сильно зависит от локальных факторов распределения напряжений, поэтому она обычно должна подтверждаться натурными испытаниями. Это относится в первую очередь к несущим винтам вертолетов, многие элементы конструкции которых имеют ограниченный ресурс ввиду высокого уровня переменных нагрузок.  [c.640]

Способность бесшарнирного винта передавать на вертолет большие моменты на втулке оказывает сильное влияние на управляемость. В противоположность этому на шарнирном несущем винте создается сравнительно небольшой момент на втулке вследствие относа ГШ, приблизительно сравнимый с моментом относительно центра масс вертолета при наклоне равнодействующей на винте. Бесшарнирный винт обеспечивает более высокую эффективность управления, чем шарнирный, и еще более высокое демпфирование по тангажу и крену. Большое демпфирование связано с повышенной чувствительностью к порывам ветра, так что скоростной вертолет с бесшарнирньш винтом часто нуждается в какой-либо автоматической системе управления для подавления влияния порывов ветра. Сильно увеличивается также взаимосвязь продольной и поперечной реакций винта на отклонение управления правда, ее можно в удовлетворительной степени уменьшить надлежащим выбором угла опережения управления. Однако существенная взаимосвязь продольного и поперечного движений в переходных процессах и при воздействии внешних возмущений остается. Значительно большая по сравнению с шарнирным винтом неустойчивость по углу атаки бесшарнирного винта требует для предотвращения ухудшения управляемости установки стабилизатора большой площади или автоматической системы управления. Бесшарнирный  [c.773]


Смотреть страницы где упоминается термин Вертолет с бесшарнирным несущим винтом : [c.297]    [c.730]    [c.734]    [c.742]    [c.168]    [c.728]    [c.770]    [c.779]    [c.227]   
Смотреть главы в:

Теория вертолета  -> Вертолет с бесшарнирным несущим винтом



ПОИСК



Вал несущего винта

Вертолет

Несущие винты вертолетов

Несущий винт бесшарнирный

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте