Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура кипения воды в зависимости от давления

Т а б л и ц а П-8 Температура кипения воды в зависимости от давления  [c.302]

Температура кипения водя в зависимости от барометрического давления  [c.76]

Температура кипения, °С, воды в зависимости от барометрического давления В, мм рт. ст.  [c.302]

Определим теоретически возможные пределы изменения расхода воздуха для испарительного охлаждения воды при пониженном давлении в контактном аппарате. С этой целью рассмотрим идеальный контактный аппарат, в котором охлаждение воды происходит только з-а счет ее испарения. Условно примем, что воздух в этом аппарате насыщается до 100 %, не изменяя своей температуры, равной температуре поступающей воды, которую, как характерную для компрессоров и конденсаторов холодильных машин, примем равной 35 С. Найдем удельный расход воздуха g для отводимого теплового потока Q = 1,16 кВт в зависимости от давления в аппарате. Для расчетов принимаем следую цие граничные условия верхнее давление Я = Ра = 1-10 Па — атмосферное давление, соответствующее режиму работы градирен нижнее давление Р Р — = 5700 Па — давление, соответствующее режиму работы вакуумного аппарата с кипением воды при температуре tn, равной 35 °С.  [c.139]


Это — линейное соотношение, к которому изотермы приближаются, когда р стремится к нулю. Отношение между двумя величинами температуры на термодинамической шкале, соответствующее любым двум воспроизводимым уровням температуры (например, температурам кипения воды и таяния льда при давлении в 1 стандартную атмосферу , может быть найдено измерением объема любого пара или смеси паров ири нескольких низких давлениях на каждом уровне температуры. Произведение давления и объема в зависимости от давления может быть выражено графически 1(рис. 2il-l) с экстраполяцией кривых до нулевого давления. В таком случае из уравнения (21-2) имеем  [c.206]

Значения критической плотности теплового потока qy для кризиса первого рода при кипении воды в условиях вынужденного течения в круглой трубе диаметром 8 мм и длиной /> 160 мм, обогреваемой равномерно по периметру и длине, представлены в табл. 3.27 [89] в зависимости от давления р, массовой скорости G, степени недогрева воды до температуры насыщения Д - Т или массового паросодержания в месте кризиса х = = 0 /(0 + ( п), где и — массовые расходы пара и жидкости. Представленные значения получены приведением большого числа экспериментальных данных по для различных условий к диаметру трубы 8 мм и единым значениям других определяющих факторов, находящихся в диапазонах р = 3—20 МПа G = 750—5000 кг/(м -с) Д ед = 75-0К л = 0-л .  [c.243]

В зависимости от степени подогрева питательной воды экономайзеры подразделяют на некипящие и кипящие . В водяных экономайзерах некипящего типа (чугунном или стальном) питательная вода подогревается до температуры на 40.. . 50° ниже температуры кипения при данном давлении в паровом котле, а в водяных экономайзерах кипящего типа питательная вода нагревается до температуры кипения, при которой до 25 % ее массы превращается, во влажный насыщенный пар. При наличии автоматических устройств, регулирующих температуру подогреваемой воды, допускается разность температур кипения воды в котле и воды в экономайзере некипящего типа 20°.  [c.86]

Фиг. 2-36. Удельные веса воды при температурах кипения и насыщенного пара в зависимости от давления. Фиг. 2-36. <a href="/info/499923">Удельные веса</a> воды при <a href="/info/12741">температурах кипения</a> и насыщенного пара в зависимости от давления.

При уменьшении или увеличении давления на свободной поверхности жидкости при данной температуре соответственно уменьшается или увеличивается давление насыщенного пара. Следовательно, при уменьшении атмосферного давления (например, в горах) температура кипения воды снижается, а при повышении (например, в глубокой шахте) температура кипения возрастает. Имея таблицу зависимости давления насыщенного пара жидкости от температуры, можно по температуре кипения жидкости (например, воды) определить соответствующее ей давление насыщенного пара, равное (для открытых сосудов) атмосферному давлению.  [c.14]

На рис. 6-6 приведена типичная картина зависимостей g и а от температурного напора А , под которым понимается превышение температуры стенки ст над температурой насыщения которая находится по таблицам насыщенного пара соответственно заданному давлению [12,22]. Экспериментальные числовые значения характеризуют ориентировочно случай кипения воды в  [c.167]

Графики изменения теплотехнических характеристик конденсационной части поверхностного конденсатора в зависимости от изменения относительного массового содержания ДФС по длине трубного пучка представлены на рис. 8.2. Из них видно, что температура наружной поверхности труб на 16. .. 18 К превосходит температуру кипения воды при атмосферном давлении. Поэтому вдоль всего конденсационного участка трубного пучка теплоотдача к воде осуществляется в режиме поверхностного кипения. Значение коэффициента теплоотдачи при этом имеет тот же порядок, что и при конденсации ДФС. Это обеспечивает достаточно высокие значения плотностей тепловых потоков, лежащие в диапазоне от 1,92-10 до 2,73-10 Вт/м . Отметим, что указанные  [c.157]

Из повседневного опыта мы знаем, что одно и то же вещество в зависимости от внешних условий (давление и температура) может находиться в различных агрегатных состояниях. Например, при атмосферном давлении вода существует в жидком состоянии при температурах от О до 100° С. При температуре ниже 0° С при атмосферном давлении вода переходит в твердую фазу — лед, а при нагреве выше 100° С вода переходит в парообразное состояние. Известно также, что при изменении давления температуры затвердевания и кипения вещества изменяются.  [c.135]

Предельный регенеративный цикл перегретого пара, характеризуемый подогревом питательной воды до температуры кипения при начальном давлении в бесконечно большом числе ступеней подогрева, мог бы дать увеличение термического к. п. д. сравнительно с циклом Ренкина на 15—25%, в зависимости от значения начальных параметров, но практически он неосуществим.  [c.89]

Если рассматривать каждую кривую жидкости в отдельности, то увидим, что для каждой жидкости зависимость температуры кипения от давления очень значительна и притом интенсивность изменения от изменения р различна, а именно — увеличивается с возрастанием давления. Например, при 1 ат температура кипения воды =100° С, а при 2 ата 1 =119,53, т. е. температура изменяется на 19" ,53С с изменением давления на 1 ата при изменении же давления также на 1 ата, но в пределах давлений от 99 до 100 ага изменение / составляет всего лишь на 0,79° С, т. е. интенсивность изменения температуры кипения понизилась в 23 раза. Примерно такое же явление имеем и для других жидкостей, что видно из характера кривых, приведенных на фиг. 9. 3.  [c.216]

Система охлаждения может быть открытой или закрытой в зависимости от того, имеет ли она непосредственное сообщение с атмосферой. В открытой системе образующийся пар непрерывно отводится в атмосферу, что вызывает сравнительно большой расход охлаждающей жидкости. В закрытой системе выход пара возможен через специальный клапан только при образовании внутри системы избыточного давления 0,2—0,3 кг см . Этим значительно снижается расход жидкости, уменьшается образование накипи, а также несколько повышается температура кипения воды (примерно до 105—108°).  [c.35]


Термометр, работающий на принципе расширения вещества при нагревании, дает различные показания в зависимости от того, каким веществом он заполнен. На пример, если взять два одинаковых термометра, один из которых заполнен ртутью, а другой — спиртом, отметить на них две постоянных точки 0° — температуру таяния льда и 100° — температуру кипения воды при нормальном давлении, и промежуток между О и 100° разделить на 100 равных делений, каждое из которых будет соответствовать /=ГС, то в силу того, что коэффициенты объемного расширения этих веществ сами зависят от температуры и притом различным образом для разных, веществ, показания термометров будут, строго говоря, одинаковы лишь при 0° и при 100°, но не в интервале между этими температурами. Поэтому деления на шка л ах этих термометров должны быть различными.  [c.8]

Теплоотдача при кипении жидкости-Опыт показывает, что температура кипящей жидкости всегда несколько выше 1 . Она остается почти постоянной в направлении от свободного уровня к поверхности теплообмена (рис. 13.11, а) и лишь в слое толщиной 2 5 мм у самой стенки резко возрастает. Следовательно, в прилегающем к стенке слое жидкость перегрета на величину Д/=0—4 эта величина называется температурным напором. Экспериментальная зависимость ц и а от температурного напора Ц представлена на рис. 13.11,6 при кипении воды в большом объеме при атмосферном давлении. На участке АВ при Д/ = 0ч-5°С д= 100-ч-5600 Вт/м2 значение коэффициента теплоотдачи невелико и определяется условиями свободной конвекции однофазной жидкости. При дальнейшем повышении М  [c.171]

Фиг. 17. Температура кипения воды I ь зависимости от барометрического давления и давления в системе. Фиг. 17. <a href="/info/85650">Температура кипения воды</a> I ь зависимости от <a href="/info/10806">барометрического давления</a> и давления в системе.
Растворимости кислорода, близкой к нулевой, можно достигнуть при разных температурах в зависимости от величины вакуума или избыточного давления (см. рис. 67). Однако для значительного уменьшения содержания кислорода в воде требуется довольно большое время. Скорость удаления кислорода из воды, нагретой до кипения, определяется уравнением  [c.314]

Как указывалось выше (п. 8.2.3), теплообмен при развитом пузырьковом кипении полностью управляется своими внутренними механизмами и не зависит от скорости вынужденного движения. Однако это не означает, что вынужденное движение вообще не влияет на закономерности кипения. Прежде всего с ростом скорости течения жидкости Wq возрастает коэффициент теплоотдачи однофазной конвекции и, следовательно, при неизменной плотности потока q уменьшается перегрев стенки относительно. Это приводит к тому, что начало кипения в потоке жидкости происходит при тем больших q, чем выше скорость жидкости. Эта закономерность хорошо видна из рис. 8.5, на котором представлены сглаженные опытные зависимости q(AT), полученные одним из авторов [17]. Теплообмен происходил на омываемой потоком воды плоской пластине при давлении 3,92 бар. Кривая 1 соответствует кипению при свободном движении (в большом объеме). В условиях обтекания пластины потоком воды до начала закипания коэффициент теплоотдачи не зависит от плотности теплового потока и целиком определяется скоростью жидкости (кривые 2, 3, 4). С ростом теплового потока при постоянном а, растет температура стенки, и при некотором значении  [c.355]

Вода обладает хорошей конвекционной теплопроводностью и слабо поглощает нейтроны. В мощных реакторах, имеющих температуру активной зоны около 300 °С, использование воды затрудняется ее закипанием. Чтобы избежать кипения, приходится сильно повышать давление в системе теплоотвода. А это требует использования больших количеств нержавеющей стали, которая сильно поглощает нейтроны. Кроме того, при высоких температурах вода становится химически активной. Интересной разновидностью водяного теплоносителя является система с кипящей водой, не требующая больших давлений. При этом получающийся пар можно направлять прямо в энергетическую турбину, что в перспективе дает возможность получать высокий к. п. д. в соответствующих энергетических установках. Недостатком реактора на кипящей воде является довольно сильная зависимость коэффициента размножения k от давления пара в активной зоне, что может привести к опасной нестабильности реактора.  [c.580]

Для пленочного кипения характерно существование паровой пленки, покрывающей поверхность нагрева. Пленочное кипение происходит при большей разности температур между твердой поверхностью и жидкостью. Для воды (и большинства органических жидкостей) при атмосферном давлении этот температурный напор составляет > 100°. Пленочное кипение наблюдается в быстродействующих перегонных аппаратах, при кипении криогенных жидкостей, охлаждении двигателей на химическом топливе, охлаждении реакторов и др. При высоких давлениях коэффициент теплоотдачи при пленочном кипении может так возрасти, что пережога поверхности нагрева не наступает. При высоких температурах при пленочном кипении значительное количество теплоты передается излучением, поэтому коэффициент теплоотдачи при пленочном кипении зависит от излучательных свойств поверхности теплообмена, поверхности жидкости и самого пара. Расчетные зависимости для коэффициентов теплоотдачи при ламинарном движении паровой пленки могут быть получены теоретическим путем. В развернутой форме эта зависимость имеет вид  [c.202]


При кипении воды, когда р = р ц р превращается в нуль, количество растворенных газов падает до нуля. На фиг. 107 показана зависимость содержания кислорода в воде от температуры при разных давлениях.  [c.140]

Теперь мы в состоянии установить количественное влияние примеси воздуха в конденсаторе на скорость конденсации. Предположим известным давление, температуры подводимого пара и охлаждающей воды Tq, а также отношение проводимостей. Найдем зависимость изменения скорости конденсации —т" от содержания воздуха в паре (1—/о). Уравнения (6-41) и (6-39) показывают, что —т" имеет наибольшее положительное значение при концентрации (1—/о), равной нулю. Скорость конденсации уменьшается линейно с ростом содержания воздуха в газовой фазе. Пропорциональное уменьшение скорости конденсации будет максимальным при температуре охладителя, лишь немного меньшей температуры кипения. Следующий пример служит количественной иллюстрацией этой тенденции.  [c.249]

Температура кипения воды в котлах составляет в зависимости от давления от 150 до 350° С, температура греющего тела (газов) доходит до 1 500° С и выше, а температура, при которой обычная трубная сталь еще сохраняет необходимую для сопротивлен1Ия внутреннему  [c.193]

Цикл 1—2—3—4—I (см. рис. 97) представляет собой круговой процесс, совершаемый ртутью. Начальная точка цикла — точка I. Она характеризует состояние ртути при поступлении ее в ртутный котел. Линия ]—2 изображает нагрев жидкой ртути, причем точка 2 соответствует температуре кипения при данном давлении. Последнее выбирают таким, чтобы температура в точке 2 соответствовала наибольшей допустимой температуре. Уже при 1МПа для ртути температура кипения равна 515" С. Линия 2—3 изображает парообразование в котле, 3—4 — адиабатное расширение ртутного пара в паро-ртутиой турбине и 4—I — копдеисацпю отработавшего пара в конденсаторе-испарителе. Точку 4 выбирают в зависимости от того, какое давление выбрано для второго рабочего тела — воды.  [c.242]

На рис. 8.12 приведена фазовая диаграмма воды, в которой тройная точка (нонвариантная система) обладает координатами 7 =273,15 К, /7=610,5 Па. Температура кипения при давлении 1,013 10 Па соответствует 373,15 К. Введение растворенного вещества (второй компонент) увеличивает число степеней свободы и константные точки растворителя начинают смещаться в зависимости от концентрации растворенного вещества. На этой же диаграмме штриховой линией нанесена кривая давления насыщенного пара над водным раствором некоторой постоянной концентрации С = onst. Пересечение штриховой кривой с изобарой р= 1,013 10 Па произойдет при температуре выше 373 К, а с кривой давления пара надо льдом — ниже 273,15 К. Все изменения константных точек могут быть вычислены или определены экспериментально. Для разбавленных растворов они прямо пропорциональны числу молей растворенного вещества. Расчетные уравнения, известные из курса химии [29], приведены ниже.  [c.282]

Как известно, в устойчивом равновесии всякая сйстема в зависимости от характера внешних условий имеет минимум одного из своих термодинамических потенциалов и при изменении этих условий переходит из одного устойчивого состояния в другое. Например, когда воде сообщается теплота при нормальном атмосферном давлении, то она или нагревается, или закипает и частично переходит в пар, как только ее температура достигает 100° С. Однако известно также, что путем очистки жидкости можно добиться ее перегрева и фазовый переход не наступит даже при температуре, заметно превышающей температуру кипения при данном давлении. Аналогично обстоит дело и в случае других фазовых переходов первого рода в чистом паре затягивается конденсация (переохлажденный пар), в чистой жидкости или растворе затягивается переход в кристаллическое состояние (пересыщение).  [c.229]

Вода обладает многими специфическими свойствами, имеющими ярко выраженный аномальный характер. Все они - следствие особенностей структуры воды и развитости в ней водородных связей. Плавление твердой воды - льда - сопровождается не расширением, а сжатием, а при замерзании воды объем льда значительно увеличивается. Как известно, подавляющее большинство веществ при плавлении расширяется, а при затвердевании, наоборот, уменьшает свой объем. Аномально также влияние температуры на изменение плотности воды при росте температуры от 273 до 277 К плотность увеличивается, при 277 К она достигает максимальной величины, и только при дальнейшем повышении температуры плотность воды начинает уменьшаться. Зависимость теплоемкости воды от температуры имеет экстремальный характер. Минимальная теплоемкость достигается при температуре 308,5 К и вдвое превышает теплоемкость льда, а при плавлении других твердых тел тегаюемкость изменяется незначительно. Удельная теплоемкость воды аномально велика, она равна 4,2 Дж/(г К). Вязкость воды в отличие от вязкости других веществ растет с повьцнением давления в интервале температур от 273 до 303 К. Вода имеет температуру плавления и кипения, значитель-  [c.186]

Работа термохимических трансформаторов теплоты основана на свойствах растворов. В исиол ,дуемых для этих целей растворах растворителем является вода, а растворенным веществом — гидрат окиси калия КОН или едкий натр NaOH. Темперагура кипения чистой воды ниже температуры кипения раствора при том же давлении. На рис. 65, б изображена зависимость температуры кипения водяного раствора КОН от концентраций лкои и хн о мри различных давлениях. При давлении 100 кПа чистая вода кипит при температуре 372,64 К, а 90%-пый раствор КОН — при 643 К.  [c.353]

В зависимости от создаваемого вакуума, параметров охлаждающей воды и пара для ва-куум-кристаллизационных установок обычно используются двух-, трех- или черырехступен-чатые пароэжекторные блоки. При температуре охлаждающей воды 15...20 С и давлении пара 0,6...0,9 МПа такие блоки позволяют создать в системе вакуум, соответствующий остаточному давлению 5,3...3,3 кПа и температуре кипения воды 34...26 °С. При необходимости эту температуру можно понизить путем создания более глубокого вакуума.  [c.549]

В зависимости от степени нагрева воды различают некнпящие и кипящие экономайзеры. В кекипящих экономайзерах нагрев питательной воды производится до температуры на 30—40 К ниже температуры кипения в котле в кипящих — происходит ке только подогрев, но и испарение 15—20% воды. Стальные зкономайзеры применяют в котельных агрегатах среднего и высокого давления чугунные — только в котельных агрегатах низкого давления (до 2,25 МПа).  [c.191]

Величина а для каждого термометра определялась из данных, полученных при изучении зависимости температуры кипения воды от давления. Ошибка в значении а составляла примерно 0,000000025 при определении значений температуры кипения серы, соотв тствую-ш их давлению 660—880 мм рт. ст., по сравнению со значением, соответствующим 760 мм рт. ст., это приводило к ошибке, меньшей  [c.291]

Характер зависимости коэффициента Грюнайэена от температуры для различных давлений показан на рис. 8.15 и 8.16. Из рис. 8.16 видно, что для воды, недогретой до кипения, коэффициент Грюнайзенав широком диапазоне давлений является функцией только температуры, а значение его при этом существенно больше, чем для пароводяной смеси. Этот факт можно объяснить из рассмотрения формулы для определения коэффициента Грюнайзена, из которой следует, что величина, обратная величине коэффициента Грюнайзена, характеризует степень энергоемкости тела. Другими словами, наиболее энергоемкие теплоносители должны иметь наименьшее значение коэффициента Грюнайзена. Для более точной характеристики физического смысла коэффициента Грюнайзена запишем его в виде  [c.186]


На рис. 2 представлена зависимость коэффициента теплообмена при поверхностном кипении воды под давлением 1,5 ата, полученная автором К Экспериментальный участок опытной установки представлял собой латунную горизонтальную трубку с внутренним диаметром 7,95 мм длиной от 700 до 900 мм. Для измерения температуры стенки к трубке припаивались оловом медь-константановые термопары, которые располагались по боковой образующей. Приведенные на рис. 2 опытные данные относятся к двум разным режимам, отличающимся друг от друга скоростью циркуляции и удельной тепловой нагрузкой. Экспериментальные кривые экстраполированы до значений коэффициентов теплообмена, устанавливающихся в условиях развитого кипения при нулевом паро-содержании (3. Эти значения а определены по формуле Л. С. Стер-мана [2].  [c.115]

Парообразование в открытом и закрытом свсудах. Зависимость температуры кипения БОДЫ и конденсации пара от давления. Теплосодержание воды при температуре кипения. Понятие о насыщенном паре. Теплота парообразования.  [c.612]


Смотреть страницы где упоминается термин Температура кипения воды в зависимости от давления : [c.331]    [c.90]    [c.368]    [c.305]    [c.198]    [c.229]    [c.100]    [c.140]    [c.45]   
Смотреть главы в:

Справочник по теплопередаче  -> Температура кипения воды в зависимости от давления



ПОИСК



915 — Температуры кипени

ВОДА Температура кипения

Д давление температуры

Давление воды на щит

Зависимость Ср от давления

Зависимость от температуры

Кипение

Температура кипения



© 2025 Mash-xxl.info Реклама на сайте