Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет на прочность подшипников скольжения

РАСЧЕТ НА ПРОЧНОСТЬ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ  [c.254]

До последнего времени развитие методов расчета деталей машин на изнашивание отставало от развития методов расчета на прочность вследствие значительно большей сложности задач, особенно для тех случаев, когда трение происходит в условиях несовершенной смазки. Расчеты подшипников и подпятников скольжения для работы в условиях гидродинамической смазки, основанные на положениях теории, являются, по сун еству, расчетами на отсутствие изнашивания.  [c.51]


Коленчатый вал 2 изготовляют кованым нз стали 45. Опоры вала выполняют на подшипниках скольжения или качения. Вал имеет обычно две илн четыре опоры. Расчет на прочность коленчатого вала и удельных усилий в опорах ведут по. методике, изложенной выше (см. главы 2 и 12).  [c.264]

Расчет цапф и подшипников скольжения на прочность, износ и нагрев  [c.539]

Конец коленчатого вала, опертый в подшипниках скольжения, был нагружен сравнительно небольшим усилием Р от зубчатого колеса, расположенного между опорами. Расчет на прочность при обычном для коленчатых валов допускаемом напряжении 20 кГ/мм привел к конфигурации конца вала, изображенной на рис. 85, а. Непрерывные аварии переднего подшипника заставили внимательнее присмотреться к конструкции узла. Когда коленчатый вал установили на испытательный стенд и подвергли действию силы, равной расчетной силе, то оказалось, что конец вала деформировался и принимал в поперечном сечении форму эллипса, большая ось которого превышала диаметр подшипника на 0,2 мм. Между тем, при диаметральном зазоре 0,1 мм эллипсность, равная только 0,05 мм, совершенно уничтожает клиновидность масляного слоя на участке максимального сближения вала с подшипником, являющуюся непременным условием правильной работы последнего.  [c.144]

Синхронные магнитные механизмы, передающие вращение, имеют в конструкции роторов валы, на которых установлены элементы механизма. Прочность вала в значительной степени определяет надежность и работоспособность устройства. Это делает необходимым расчет валов. При расчете вал рассматривается как балка переменного сечения, лежащая на опорах — подшипниках и нагруженная поперечными изгибающими силами и моментами. Подшипники качения при расчете следует рассматривать как жесткие шарнирные опоры. Расстояние между опорами берется равным расстоянию между осевыми плоскостями подшипников. При расчете вала с подшипниками скольжения это допущение также возможно при условии, что место опирания находится на расстоянии до 0,5 диаметра шейки вала в подшипнике, но не более  [c.178]

Заедание происходит при перегреве подшипника. Вследствие трения нагреваются цапфа, вкладыш и масло. С повышением температуры понижается смазочная способность масла , которая связана с прочностью тонкой масляной пленки на поверхностях трения. При повышении температуры в рабочей зоне подшипника до некоторого критического значения эта пленка разрушается. Возникает трение без смазки (металлический контакт), что влечет за собой дальнейшее повышение температуры и заедание (схватывание) поверхностей трения. Заедание приводит к выплавлению подшипника. Подшипник выходит из строя. Так как износ и заедание являются причинами выхода из строя подшипников, то основными критериями работоспособности и расчета подшипников скольжения являются износостойкость и теплостойкость.  [c.413]


Расчет на жесткость. Размеры вала во многих случаях определяются не прочностью, а жесткостью (валы коробок передач, редукторов и др.). При недостаточной жесткости вала действующие на него силы могут вызвать недопустимо большой прогиб. Величина этого прогиба при пульсирующей нагрузке не остается постоянной. Неизбежно появляются вибрации вала, ухудшающие условия передачи в зубчатых колесах возникает дополнительное скольжение зубьев, появляется неравномерность распределения давлений по длине зубьев. Кроме того, возникают значительные динамические нагрузки на зубья, которые ухудшают условия работы подшипников. В таких случаях производят поверочный расчет на изгибную и крутильную жесткость валов.  [c.390]

Расчет износостойкости материалов, работающих при трении качения или при скольжении со смазкой, усложняется тем, что темп нарастания износа при соответствующей наработке может измениться скачкообразно в результате возникновения на поверхностях трения контактных дефектов усталостного характера. В этих случаях расчет деталей (например, подшипников) проводят на контактную прочность. Однако часто подшипники качения выбраковываются в результате преждевременного износа, что необходимо учитывать при конструировании.  [c.146]

Расчет цилиндрических подшипников скольжения. Размеры цилиндрических опор приборов определяют из условий прочности, износоустойчивости и ограничения момента сопротивления вращению. Условие износоустойчивости опоры ограничивает удельные давления р на поверхности контакта цапфы и подшипника до -значения [р], при котором исключается выдавливание смазочного материала из зазора между элементами опор. Расчет выполняют G учетом направления действующей нагрузки.  [c.531]

Для определения коэффициентов запаса прочности необходимо построить эпюры изгибающих и крутящих моментов. Это построение выполняют по размерам, взятым с чертежа вала. При составлении расчетной схемы вала обычно принимают, что при определении изгибающих моментов подшипники можно считать шарнирными опорами. Центры этих опор совмещают с серединами подшипниковых узлов (см. пример 12.2). Точность такой расчетной схемы зависит от типов подшипников, на которые опирается вал, — так при радиальных шариковых и, в первую очередь, сферических (самоустанавливающихся) эта схема обладает сравнительно высокой точностью она менее точна при подшипниках скольжения (особенно в случаях, когда они имеют значительную длину) и при сдвоенных подшипниках качения (см., например, рис. 14,15). Некоторые специалисты считают, что точнее рассматривать сдвоенный подшипник качения не как шарнирную опору, а как жесткую заделку. Следует учесть, что при таком предположении расчет усложняется, так как при определении изгибающих моментов вал надо рассматривать как статически неопределимую балку. Кроме того, выбор такой расчетной схемы дает погрешность, идущую не в запас прочности, в то время как схема с шарнирными опорами, если и дает погрешность, то всегда повышающую надежность расчета.  [c.368]

В четвертое издание учебника по сравнению с предыдущим внесены следующие изменения. Все формулы представлены так, что остаются справедливыми для любой системы единиц физических величин. В справочных данных и примерах расчета используется только Международная система единиц. Расчеты на ресурс распространены на зубчатые (шлицевые) соединения в соответствии с ГОСТ 21425—75 и на клиноременные передачи — ГОСТ 1284.3—80. В расчетах на ресурс зубчатых передач и подшипников качения использована общая методика по типовым графикам нагрузки. Дана современная методика расчета конических передач с круговыми зубьями, Использована теория вероятности при расчетах прессовых соединений, подшипников скольжения и качения, также результаты современных исследований прочности волновых передач и передач Новикова. Внесены изменения в методику изложения некоторых разделов курса. Все эти изменения связаны с быстрым развитием отечественной науки в области машиностроения, которому уделяется первостепенное внимание в планах нашей партии и правительства, в решениях XXVI съезда КПСС.  [c.3]


Опорные реакции осей и валов, действующие на шипы и шейки, вызывают их изгиб. Цапфа должна обладать достаточными прочностью и жесткостью, так как малейший перекос или прогиб цапфы вызывает резкое перераспределение давления на поверхности цапфы. Трение скольжения цапфы о подшипник вызывает ее износ с выделением теплоты. Смазка подшипника и цапфы уменьшает трение и износ трущейся пары. Однако с повышением температуры смазка теряет вязкость и может легко выдавливаться из-под цапфы, что нарушает нормальное действие машины. Поэтому цапфы подвергают расчетам на прочность, на невыдавливание смазки и на нагрев.  [c.396]

При проектном расчете задаются относительной длиной подшипника j/ = //df при несамоустанавливающемся вкладыше vj = 0,4... 1,2 при самоустаР1авливающемся вкладыше j/= 1,5...2,5 (меньшие значения для быстроходных валов и при значительных нагрузках). Так как диаметр цапфы определяется из расчета вала на прочность или жесткость, то расчет подшипника скольжения сводится к определению его длины.  [c.226]

Вследствие того что пластмассы имеют относительно низкую механическую прочность, необходимо ввести поправочный коэффициент, который позволит оценить способность втулки воспринимать нагрузки в статическом положении. Расчет такого параметра производится с учетом ползучести и снижения механических свойств в различных температурных условиях. Таким параметром является несущая способность втулок под которой понимается величина допустимого среднего удельного давления для втулки при данном зазоре, толщине, диаметре при статическом нагружении. Учитывая, что расчетная схема втулки гидроупора аналогична при статическом нагружении расчетной схемы втулки подшипника скольжения, воспользуемая методикой расчета допустимого среднего удельного давления для втулки подшипника скольжения [49]. На рис. 56, в изображена эпюра распределения напряжений во втулке штока. При расчете величины допустимого среднего удельного давления необходимо это учесть.  [c.121]

Наибольшие усилия, полный ход рукояток и педалей принимаются по табл. И.3 1. Соответствующий полному ходу угол поворота рукоятки должен быть не более 30 , а педали — не более б0 . КПД рычажной передачи равен йроизведению КПД всех шарниров. В зависимости от конструкций подшипника и характера смазывания КПД шарнира находится в пределах 6,96—0,98. Расчет деталей системы управления на прочность ведется на возможное случайное приложение усилия, равного при управлении рукояткой 600 Н, а при управлении педалью 800 Н. Подшидники (втулки) системы управления рассчитываются на статическую нагрузку, возникающую в системе при приложении в рукоятке усилия, равного 200 Н, при приложении к педали — 250 Н. Давления в подшипниках скольжения (втулках) не должны превышать значений, указанных в табл. П.3.2. Следует избегать применения длинных сжатых тяг и расположения рычагов под острыми углами к тягам. Рукоятки должны передвигаться от себя н на себя . Вращательные и боковые (в сторону) движения нел(елательны. Ручки рукояток должны располагаться на уровне груди движение педали, управляемой сидящим рабочим, должно быть наклон-  [c.331]

Выбор различных посадок для подвижных и неподвижных соединений можно производить на основании предварительных расчетов, экспериментальных исследований или ориентируясь на аналогичные соединения, условия работы которых хорошо известны. Расчеты, связанные с выбором подвижных посадок, например при сопряжении цапф с подшипниками скольжения, осуществляются обычно на основе гидродинамической теории трения и заключаются в установлении необходимого зазора для обеспечения жидкостного трения. В других случаях зазоры могут рассчитываться по условию компенсации отклонений формы и расположения поверхностей для обеспечения беспрепятственной сборки деталей. Возможны также расчёты по условиям обеспечения необходимой точности перемещений деталей или фиксации их взаимного расположения, расчеты зазоров для компенсации температурных деформаций деталей и т. п. Расчеты, связанные с выбором посадок в неподвижных соединениях, сводятся к определению прочности соединения, напряжений и деформаций сопрягаемых деталей, а также к определению усилий запрессовки и распрессовки. В результате тех или иных расчетов необходимо получить допустимые наибольшие и наименьшие значения расчетных зазоров [5rnaxi, [Sm, 1 или расчегных натягов (Л/ шЕкЬ ЛТшт .  [c.299]

Износостойкость. Способность детали сохранять необходимые размеры трущихся поверхностей в течение заданного срока службы называют износостойкостью. Она зависит от свойств выбранного материала, термообработки и чистоты поверхностей, от величины давлений или контактных напряжений, от скорости скольжения и условий смазки, от релсима работы и т. д. Износ уменьшает прочность деталей, изменяет характер соединения (при работе появляется шум). В большинстве случаев расчеты деталей на износостойкость ведутся по допускаемым давлениям [р, установленным практикой (расчеты подшипников скольжения и др.). Применение в конструкциях уплотняющих устройств защищает детали от попадания пыли, увеличивая их износостойкость.  [c.8]

Научной основой теории расчета зубчатых и червячных передач и подшипников качения должна служить контактно-гидродинамическая теория смазки, зародившаяся в СССР. Работы в области этой теории позволили объяснить и численно обосновать ряд важнейших явлений контактной проч-ности деталей машин. Показано существенное повышение контактной прочности oпepeн aющиx поверхностей по сравнению с отстающими при качении со скольжением, связанное с резким изменением напряженного состояния в тонких поверхностных слоях от изменения направления сил трения в связи с пикой у эпюры давлений на выходе из контакта. Установлено численное значение (достигающее 1,5—2) коэффициента повышения несущей способности косозубых передач при значительном перепаде твердости шестерен и колес вследствие повышения контактной прочности опережающих поверхностей головок зубьев.  [c.68]



Смотреть страницы где упоминается термин Расчет на прочность подшипников скольжения : [c.41]    [c.11]    [c.25]   
Смотреть главы в:

Применение пластмасс в машиностроении  -> Расчет на прочность подшипников скольжения



ПОИСК



660 — Расчет скольжения

Подшипники Расчет

Подшипники расчета 264 — Расчет

Подшипники скольжения

Расчет подшипников скольжения

Расчет цапф и подшипников скольжения на прочность, износ и нагрев



© 2025 Mash-xxl.info Реклама на сайте