Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводниковые Сложные полупроводники

Значительное место в электротехнике занимают полупроводниковые материалы (полупроводники). В результате разработки и изучения свойств полупроводников был создан ряд новых приборов (усилители, выпрямители, фотоэлементы и др.), позволивших успешно решить сложные вопросы современной электротехники. При рациональном выборе электроизоляционных, магнитных и других электротехнических материалов можно создать электрооборудование малых габаритов и веса, надежное в эксплуатации. Это имеет очень важное технико-экономическое значение, но для реализации этих мероприятий необходимы сведения о свойствах и применении современных электротехнических материалов, которые весьма разнообразны.  [c.3]


Электрофизические свойства кристаллов определяются, как было выяснено в гл. 3, содержащимися в них структурными дефектами и примесями. Требование продолжительности и стабильности работы полупроводниковых приборов делает одной из важнейших задач технологии задачу получения совершенных монокристаллов с заданным значением параметров. Однако получение чистых элементарных веществ, необходимых для производства различных, в том числе легированных и сложных, полупроводников, используемых для создания приборов, является чрезвычайно сложным технологическим процессом.  [c.190]

В таблицы в основном включены данные о полупроводниках с Eg<3 эВ. Тройные и более сложные полупроводниковые соединения не описаны . Не приведены также сведения о параметрах различных полупроводниковых приборов.  [c.455]

При создании электрич. поля у поверхности полупроводникового источника электронов Ш. э. приобретает значительно более сложный характер, чем в случае металла. Наряду с понижением внеш. потенц. барьера здесь наблюдается как частичное проникновение электрич. поля внутрь полупроводника на глубину, зависящую от концентрации свободных зарядов, так и его частичное экранирование слоем поверхностных зарядов. В результате электрич. поле, как правило, оказывает большее влияние на работу выхода электрона, а следовательно, и на силу электронного тока у полупроводников, чем у металлов.  [c.468]

Ф-лы (1) следует рассматривать как оценочные, т. к. они не учитывают таких факторов, как, напр., влияние сложной зонной структуры кристалла (см. Зонная теория), взаимодействие электронов и дырок с фононами и др. Для полупроводников типа Ge и Si и групп А В , А В (см. Полупроводниковые материалы) типичны значения т-0, то, е- Ю, что приводит к значениям эВ,  [c.501]

В таблицы в основном включены данные о полупроводниках с Eg < 3 эв. Свойства тройных и более сложных полупроводниковых соединений не приведены. Не приводятся также сведения о параметрах различных полупроводниковых приборов .  [c.342]

Еще более сложным является вопрос управления проводимостью в пленках не элементарных полупроводников, а полупроводниковых соединений. В настоящее время имеется опыт по изготовлению пленок таких соединений, как сернистый кадмий, селенид кадмия, сернистый свинец и др. При осаждении полупроводниковых пленок в большинстве случаев имеет место частичное разложение исходного вещества на отдельные компоненты. В связи с этим практически невозможно получить пленку стехиометрического состава.  [c.165]

Технологический процесс выращивания монокристаллов не элементарных полупроводников, а полупроводниковых химических соединений значительно сложнее и состоит из следующих этапов  [c.177]


Полупроводники широко используют в электронике и энергетике. Применение полупроводников в области электроники, и особенно радиоэлектроники, открыло большие перспективы создания электронного оборудования новых типов и дало возможность решить многие сложные проблемы. В области энергетики полупроводниковые элементы применяют для преобразования тепловой, световой и атомной энергии в электрическую. Примером могут служить солнечные батареи, успешно используемые на искусственных спутниках Земли и многочисленных наземных установках. Полупроводники успешно применяют в малогабаритных и мощных выпрямительных элементах, рассчитанных на сотни и тысячи киловатт и обладающих высокой надежностью и механической устойчивостью.  [c.180]

Уже на заре развития полупроводниковой электроники остро встал вопрос о возможности использования оксидных пленок не только для пассивирования свойств поверхности, но и в качестве изолирующего слоя в планарных приборах. При этом необходимо было добиться минимальной плотности поверхностных электронных состояний на границе полупроводника с его собственным окислом. Экзамен выдержала структура 81-8102 — кремний, покрытый его собственным окислом. До сих пор система 81-8102 является сердцем современной микроэлектроники. Менее совершенна система Ое-ОеО . Однако, благодаря ряду преимуществ, она часто используется как модельная для изучения электронных явлений на поверхности. Состав и структура оксидных поверхностных фаз в многокомпонентных полупроводниковых соединениях неизмеримо более сложны, что является серьезным препятствием для изучения их электрофизических свойств. Технология синтеза оксидных слоев на многих практически важных соединениях и Л В еще не позволяет достичь уровня  [c.121]

Полупроводниковые кристаллы относятся главным образом к классу диэлектриков с ковалентной связью ). Из простых веществ с полупроводниковыми свойствами наименее сложной кристаллической структурой обладают элементы IV группы периодической системы из них наиболее важны германий и кремний. Углерод в форме алмаза относится, строго говоря, к диэлектрикам, поскольку у него ширина запрещенной зоны составляет около 5,5 эВ. Олово в аллотропной форме серого олова представляет собой полупроводник с очень малой щелью. (Свинец — это, конечно, металл.) Другие полупроводниковые элементы — красный фосфор, бор, селен и теллур — обладают весьма сложной кристаллической структурой и характеризуются ковалентной связью.  [c.188]

Приведенные простые эмпирические закономерности оказались полезными с точки зрения прогнозирования полупроводниковых производных от известных полупроводниковых соединений, в частности большой группы полупроводников сложного состава (твердые растворы, бинарные, тройные и др. соединения), производной от А В - .  [c.73]

Рассмотрим поведение примесей в полупроводниковых соединениях на примере соединений типа А "В . Поведение примесей в соединениях типа так же, как и в элементарных полупроводниках, определяется положением примеси в периодической системе, однако оно становится более сложным из-за усложнения строения основного вещества. В соединениях возрастает число различных позиций, которые могут занимать примесные атомы.  [c.132]

Для бинарных систем диаграммы плавления-затвердевания, как уже обсуждалось ранее, весьма разнообразны и сложны. На рис. 5.1 приведена типичная диаграмма полупроводниковой системы диаграмма состояния системы Ое-ЗЬ. Однако для небольших концентраций примеси в полупроводнике все сложные диаграммы можно свести к двум типам без потери общности рассуждений при описании процессов кристаллизационной очистки. Действительно, в области малых концентраций примеси, то есть в области, примыкающей к точке плавления чистого компонента, различия между разными типами фазовых диаграмм пропадают линии ликвидуса Ь и солидуса 5 в этих областях можно аппроксимировать прямыми линиями, касательными к кривым и 5 в точке плавления основного компонента (рис. 5.2). В результате имеем два типа диаграмм  [c.193]

Использующиеся в практике полупроводники могут быть подразделены на простые полупроводники (их основной состав образован атомами одного химического элемента) и сложные полупроводниковые композиции, основной состав которых образован атомами двух или большего числа химических элементов. В настоящее время изучаются также стеклообразные и жидкие полупроводники. Простых полупроводников существует около десятка, они приведены в табл. 8-2. В современной технике особое значение приобрели кремний, германий и частично селен. Сложными полупроводниками являются соединения элементов различных групп таблицы Менделеева, соответствующие общим формулам (например, Si ), A4 Bv (InSb, GaAs, GaP), A B>v ( dS, ZnSe), a также некоторые  [c.230]


Существует класс полупроводниковых приборов, выполненных на основе смешанных окислов переходных металлов, которые известны под общим названием термисторов. Термин термистор происходит от слов термочувствительный резистор . Толчком к разработке термисторов послужила необходимость компенсировать изменение параметров электронных схем под влиянием колебаний температуры. Первые термисторы изготавливались на основе двуокиси урана ПОг, но затем в начале 30-х годов стали использовать шпинель MgTiOз. Оказалось, что удельное сопротивление MgTiOз и его температурный коэффициент сопротивления (ТКС) легко варьируются путем контролируемого восстановления в водороде и путем изменений концентрации MgO по сравнению со стехиометрической. Использовалась также окись меди СиО. Современные термисторы [60, 61] почти всегда представляют собой нестехиометрические смеси окислов и изготавливаются путем спекания микронных частиц компонентов в контролируемой атмосфере. В зависимости от того, в какой атмосфере происходит спекание (окислительной или восстановительной), может получиться, например, полупроводник п-типа на поверхности зерна, переходящий в полупроводник р-типа в глубине зерна, со всеми вытекающими отсюда последствиями для процессов проводимости. Помимо характера проводимости в отдельном зерне, на проводимость материала оказывают существенное влияние также процессы на границах между спеченными зернами. Высокочастотная дисперсия у термисторов, например, возникает вследствие того, что они представляют собой сложную структуру, образованную зонами плохой проводимости на границах зерен и зонами относительно высокой проводимости внутри зерен.  [c.243]

Германий как полупроводник играет важную роль в полупроводниковой электронике. В этой области инфоко используют германий для изготовления кристаллических выпрямителей (диодов) и кристаллических усилителей (триодов или транзисторов]. Кристаллические выпрямители и усилители обладают рядом преимуществ перед электронными лампами потребляемая ими мощность значительно ниже, чем у вакуумных ламп, а poir их службы длительнее они отличаются большей механической устойчивостью по отношению к вибрациям и ударам, чем электронные лампы, и имеют по сравнению с ними значительно меньшие размеры. Это делает особенно перспективным их применение в сложных счетных машинах, телемеханике, радарных установках и т. п.  [c.531]

ФОСФОРЕСЦЕНЦИЯ — люминесценция, продолжающаяся значительное время после прекращения ее возбуждения ФОТО ДЕЛЕНИЕ — деление атомного ядра гамма-квантами ФОТОДИССОЦИАЦИЯ—разложение под действием света сложных молекул на более простые ФОТОИОНИЗАЦИЯ — процесс ионизации атомов и молекул газов под действием электромагнитного излучения ФОТОКАТОД — холодный катод фотоэлектронных приборов, испускающий в вакуум электроны под действием оптического излучения ФОТОЛИЗ— разложение под действием света твердых, жидких и газообразных веществ ФОТОЛЮМИНЕСЦЕНЦИЯ—люминесценция, возникающая под действием света ФОТОМЕТРИЯ— раздел физической оптики, в котором рассматриваются энергетические характеристики оптического излучения в процессах его испускания, распространения и взаимодействия с веществом ФОТОПРОВОДИМОСТЬ изменение электрической проводимости полупроводника под действием света ФОТОРЕЗИСТОР — полупроводниковый фотоэлемент, изменяющий свою электрическую проводимость под действием электромагнитного излучения ФОТОРОЖ-ДБНИЕ — процесс образования частиц на атомных ядрах и нуклонах под действием гамма-квантов высокой энергии ФОТОУПРУГОСТЬ — возникновение оптической анизотропии и связанного с ней двойного лучепреломления в первоначально оптически изотропных телах при их деформации  [c.293]

Гетеролазеры и гетерофотоприём-н и к и, используемые в сочетании с плёночными полупроводниковыми Болиоводами, могут выполняться на основе единой Г. и на общей полупроводниковой подложке объединяться (интегрироваться) в оптич. схему (методами планарной технологии). Для управления условиями генерации и распространения света часто используются сложные Г., активный слой к-рых состоит из неск. слоев постоянного или плавно изменяющегося состава с соответствующим изменением Sg. Помимо локализации света в пределах одного или неск, слоёв в плоскости ГП, при создании интегрально-оптнч. схем возникает необходимость дополнит, локализации световых потоков в плоскости волноводных слоёв (в плоскости ГП). Такие волноводы наз. полосковыми и создаются изменением либо состава и свойств полупроводника в плоскости ВОЛ1ГОВОДНОГО слоя, либо толщины слоёв, Встраивание гетеролазера в волноводную схему осуществляется с помощью оптического резонатора, образуемого периодич, модуляцией толщины волноводного слоя. При определ. выборе периода модуляции благодаря дифракции в волноводе возникает волна, бегущая в обратном направлении. В результате формируется распределённое отражение света (см. Интегральная оптика).  [c.449]

По составу полупроводниковые материалы могут быть простыми и сложными. К простым относят такие полупроводники, как Ge, Si и Se, сложными являются, например, химические соединения типа Aj By (InP, ZnS, GaAs), твердые растворы замещения (1п Оа , ASyPj ) и др.  [c.378]

Большое значение приобретает проблема получения гетероэпитаксиаль ных композиций разнообразных полупроводников с использованием i качестве подложек таких хорошо освоенных и сравнительно дешевы материалов, как монокристаллические кремний и германий. Особенно актуальна эта проблема для технологически сложных разлагающихся полупроводниковых соединений, для которых получение достаточно совершенных монокристаллов путем выращивания из расплава встречает принципиальные затруднения. Ее решение открывает путь к монолитной интеграции разнородных полупроводниковых материалов, что являете новым шагом в развитии полупроводникового приборостроения. Однакс при этом необходимо преодолеть ряд принципиальных трудностей в создании структурно совершенных гетерокомпозиций, обусловленных, прежде всего, существенными различиями в кристаллических решетках физико-химической природе составляющих гетеропару материалов. Дальнейшее развитие таких гибких низкотемпературных технологических про-  [c.85]


Химические методы получения простых полупроводников и чистых элементов, используемых при легировании и в производстве сложных полупроводниковых материалов, обеспечивают высокую степень очистки. Дистилляцией (испарение жидкой фазы) удаляют легкоиспаряющи-еся примеси, ректификацией (многократное испарение и конденсация) — примеси, имеющие невысокие температуры плавления, испарения и большой интервал жидкого состояния. Сублимацией (испарение твердой фазы) очищают от механических примесей и газов и получают монокристалл. Перечисленными методами можно получать монокристаллы с высоким значением удельного электросопротивления. Например, монокристалл германия при р = 0,10 Ом -м содержит в 1 м 10 ° атомов примесей (см. рис. 18.10).  [c.590]

В гл. 1 мы показали, что процесс, который переводит атомы с уровня 1 на уровень 3 (для трехуровневого лазера см. рис. 1.4, а) или с уровня О на уровень 3 (для четырехуровневого лазера см. рис. 1.4,6), называется накачкой. Накачка осуществляется, как правило, одним из следующих двух способов оптическим или электрическим. При оптической накачке излучение мощного источника света поглощается активной средой и таким образом переводит атомы активной среды на верхний уровень. Этот способ особенно хорошо подходит для твердотельных (например, для рубинового или неодимового) или жидкостных (например, на красителе) лазеров. Механизмы ушире-ния линий в твердых телах и жидкостях приводят к очень значительному уширению спектральных линий, так что обычно мы имеем дело не с накачкой уровней, а с накачкой полос поглощения. Следовательно, эти полосы поглощают заметную долю (обычно широкополосного) света, излучаемого лампой накачки. Электрическая накачка осуществляется посредством достаточно интенсивного электрического разряда, и ее особенно хорошо применять для газовых и полупроводниковых лазеров. В частности, в газовых лазерах из-за того, что у них спектральная ширина линий поглощения невелика, а лампы для накачки дают широкополосное излучение, осуществить оптическую накачку довольно трудно. Замечательным исключением, которое следует отметить, является цезиевый лазер с оптической накачкой, когда пары s возбуждаются лампой, содержащей Не при низком давлении. В данном случае условия для оптической накачки вполне благоприятны, поскольку интенсивная линия излучения Не с 390 нм (достаточно узкая благодаря низкому давлению) совпадает с линиями поглощения s. Фактически этот лазер представляет интерес лишь в историческом плане, как одна из первых предложенных лазерных схем. Кроме того, его реализация на практике является весьма сложной, поскольку пары s, которые для обеспечения достаточного давления газа необходимо поддерживать при температуре 175 °С, представляют собой весьма агрессивную среду. Оптическую накачку весьма эффективно можно было бы использовать для полупроводнико-  [c.108]

Как при изготовлении собственно волноводных структур, так и при оформлении систем управляющих электродов используются различные виды микролитографических процессов, разработанных и широко применяемых в классической планарной технологии полупроводниковых интегральных схем. Применение сложных ге-теропереходных структур на основе полупроводников А В , таких, как тройные системы арсенид галлия-алюминия или четверные ар-сенид-фосфид галлия-индия, позволило создать первые варианты  [c.219]

Итак, из математической логики известно, что простейшие суждения могут быть либо истинными, либо ложными. Элементарными логическими операциями являются не , и , или . Сложные логические операции, составленные из элементарных, позволяют реализовать правила арифметических действий наиболее просто в двоичной системе счисления. Вот почему в качестве основного звена счетного аппарата ЭЦВЛ используется, например, электронная лампа или соответствующий полупроводниковый элемент. Известно, что электронная лампа способна находиться в двух различных устойчивых состояниях она может проводить ток (лампа открыта ), но может и не проводить его (лампа закрыта ). Когда лампа открыта , т. е. когда на выходной клемме высокое напряжение, ее состояние соответствует единице (1), когда лампа закрыта , т. е. когда на выходной клемме низкое напряжение ее состояние соответствует нулю (0). Аналогичное положение наблюдается и у полупроводников.  [c.232]

Долгое время будут актуальны и поиски новых методов накачки. В этом плане следует упомянуть об изучении особенностей оптической накачки полупроводниковых квантовых генераторов и генераторов на углекислом газе. Настойчиво ведется поиск способов электронного возбуждения генерации излучения парами сложных молекул. Разработан фотодиссоциационный лазер успешно применяется лазер, действующий на основе ионизации молекул электронным ударом. В Институте физики твердого тела и полупроводников АН БССР исследуется возможность создания лазера с накачкой синхротронным излучением. Сотрудники этого института и Белорусского государственного университета разрабатывают теорию отражения света от усиливающих сред. Возможно, что на этом пути будут построены генераторы нового типа.  [c.125]

Уходя с участка ремонта генераторов, мы прошли мимо еще нескольких стендов на одних испытывали угольные регуляторы напряжения, на других настраивали сложные полупроводниковые приборы. Кстати, полупроводники широко применяются в вагонном электрооборудовании. Сначала они вытеснили радиолампы из приемника, установленного в радиокупе. Потом с их помощью начали преобразовывать переменный ток в постоянный и поддерживать напряжение в электросети вагона на нужном уровне. Теперь во всех строящихся пассажирских вагонах диоды, транзисторы и тиристоры так же распространены, как болты и гайки.  [c.68]

Электрическая структура оксидов многих металлов чисто полупроводниковая. Наслоения оксида на металлической поверхности имеют более сложную переходную структуру от металлического проводника к полупроводнику. Поверхностный слой разориенти-рованных кристаллов по своей электрической структуре иногда ближе подходит к полупроводникам, чем к металлу.  [c.11]

В этом случае полное число электронов, участвующих в формировании химических связей у элементарного бора, будет равно 5. Этому предположению соответствует значительно более сложная по сравнению с другими элементарными полупроводниками кристаллическая структура бора, основной структурной единицей которой являются икосаэдриче-ские группы Bi2 (правильные двадцатигранники, в которых каждый атом имеет пять соседей, см. рис. 2.18). Существует несколько полиморфных модификаций бора, среди которых полупроводниковыми свойствами обладают только ромбоэдрические модификации бора (метастабильная а-форма и стабильная /3-форма). Элементарная ячейка а-В состоит из 12 атомов, а ячейка /3-В — из 105 атомов. Бор химически инертен и обладает твердостью, близкой к твердости алмаза. Это обусловлено образованием прочных ковалентных связей (расстояние В-В равно 1.71 А) и трудностью их разрыва, что определяет и высокую температуру кипения данного вещества.  [c.52]

Далее следует обратить внимание на то, что в правиле Музера-Пир-сона оговаривается только число В атомов элемента, входящего в состав полупроводника, а роль А атомов сводится к добавлению электронов в суммарное число валентных электронов Пд. Это позволяет предполагать, что можно посредством замены компонента А в исходном соединении получать не только полупроводниковые твердые растворы, производные от соединений А В - , но и другие бинарные, тройные и более сложные полупроводниковые соединения, но уже, возможно, со структурой, производной от алмазоподобной. В этом случае замещающие элементы выбираются из групп периодической таблицы, отличных от той, в которой расположен замещаемый атом А, однако при этом должны удовлетворяться общие закономерности образования полупроводников (см. выше).  [c.77]


Полупро- водники Простые полупроводники Сложные полупроводниковые соединения и их твердые раствЪры Ферриты а-кварц, сегнетоэлектрики Окислы металлов Генераторы электромагнитных колебаний, усилители и выпрямители тока, преобразователи энергии, магнитные устройства, сегнетоэлектриче-ские устройства, катализаторы  [c.217]


Смотреть страницы где упоминается термин Полупроводниковые Сложные полупроводники : [c.189]    [c.537]    [c.85]    [c.136]   
Конструкционные материалы (1990) -- [ c.576 , c.581 ]



ПОИСК



Л полупроводниковый

Полупроводники



© 2025 Mash-xxl.info Реклама на сайте