Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы с большим удельным сопротивлением

МАТЕРИАЛЫ С БОЛЬШИМ УДЕЛЬНЫМ СОПРОТИВЛЕНИЕМ  [c.256]

Формула (1-44) показывает, что наибольший к. п. д. получается при нагреве ферромагнитных материалов с большим удельным сопротивлением. При нагреве же, например, медного цилиндра в медном индукторе максимальный к. п. д. даже при равен 0,5.  [c.21]

Проводниковые материалы с большим удельным сопротивлением - константан, нихром, манганин, фехраль. Их свойства и область применения.  [c.294]

Чтобы повысить величину удельного сопротивления проводников, применяют сплавы нескольких металлов. Установлено, что только сплавы с неупорядоченной структурой обладают повышенными значениями удельного сопротивления и малыми значениями температурного коэффициента сопротивления. Сплавами с неупорядоченной структурой называются такие, в кристаллической решетке которых нет правильного чередования атомов металлов, составляющих сплав. Эти сплавы составляют группу проводниковых материалов с большим удельным сопротивлением и малыми значениями температурного коэффициента удельного сопротивления. Все перечисленные группы проводников обладают высокой пластичностью, позволяющей получать провода диаметром до 0,01 мм и ленты толщиной 0,05—0,1 мм.  [c.100]


Сплавы с большим удельным сопротивлением. К таким материалам относятся сплавы, имеющие при нормальных условиях удельное электрическое сопротивление не менее 0,3 мкОм- м. Эти материалы нашли достаточно широкое применение при изготовлении различных электроизмерительных и электронагревательных приборов, образцовых сопротивлений, реостатов и т. д.  [c.126]

Сопротивления служат для плавного включения и остановки электродвигателей с фазным ротором. Они представляют собой набор элементов, которые изготовлены из материалов, имеющих большое удельное сопротивление (например, никелин, константан), укрепляют элементы на изолирован ых стержнях. Набор элементов сопротивлений устанавливают в специальные ящики, которые располагают на машине так, чтобы была исключена возможность их механического повреждения, а также попадания на них влаги.  [c.128]

Основные требования к покровным компаундам достаточная механическая прочность, способность выдерживать требуемый интервал температур без растрескивания (—60 4-100° С), большое удельно сопротивление, очень мало изменяющееся при увлажнении. Выяснено, что в качестве покровных допускаются компаунды с более высокими значениями tg Ь, чем у пропиточных материалов, так как их качество на добротности катушек значительно не- отражается. Применяемые в катушках индуктивности материалы даны в табл. 29-1.  [c.372]

Электрическая проводимость материала трубы должна быть значительно меньше проводимости жидкости, так как в противном случае возможно шунтирование стенкой трубы выходной э. д. с. Если позволяют условия применения преобразователя расхода, то трубу целесообразно изготовлять из изоляционного материала. При необходимости труба может быть изготовлена из немагнитного металла, например из немагнитной нержавеющей стали с большим удельным сопротивлением. В этом случае внутренняя поверхность металлической трубы изолируется от жидкости специальным изоляционным материалом. Электроды для съема выходной э. д. с. также должны быть электрически изолированы от металлической трубы.  [c.521]

На рис. 3-31 показана модель угла стены здания, состоящей из двух слоев раз ной толщины, характеризующихся разными коэффициентами теплопроводности. Электрическая модель также должна иметь разную толщину слоев и разную их электропроводность. Если, например, теплопроводность внутреннего слоя меньше, чем внешнего, то тогда его электрическое сопротивление соответственно увеличивается за счет отверстий, сделанных в этом слое, или за счет применения электропроводящих листов с большим удельным электрическим сопротивлением. Отсутствие контактного сопротивления между слоями воспроизводится плотным их соединением. Постоянство электрических свойств проводящего листа обеспечивается применением соответствующих материалов.  [c.120]


Наиболее важным свойством смазочных материалов, оказывающим решающее влияние на работу узла, является вязкость, т. е. свойство смазки оказывать сопротивление относительному перемещению ее частиц. Вязкость масла выбирается в зависимости от удельного давления в подшипнике. С величиной вязкости связана величина предельного нагружения подшипников. В подшипниках с большими удельными давлениями применяются масла с большой вязкостью, при малых удельных давлениях — с меньшей вязкостью.  [c.252]

Материалы, из которых изготовляются термометры сопротивления, должны обладать большим температурным коэффициентом сопротивления, большим удельным сопротивлением, постоянством химических и физических свойств, а зависимость сопротивления металла от температуры должна выражаться плавной кривой. Предъявляемым требованиям удовлетворяют платина и медь, из которых изготовляют технические термометры сопротивления. Платиновые термометры сопротивления предназначаются для длительного измерения температуры в пределах от — 200 до 4-500° С, а медные —в пределах от — 50 до -МОО°С. Медные термометры сопротивления могут быть использованы для кратковременных измерений температуры до 150°С.  [c.57]

Как уже отмечалось, диэлектрические материалы обладают высокими удельными сопротивлениями р и в них возможно наличие электростатических полей. Весьма важно для диэлектриков явление поляризации, с рассмотрения которого (см. гл. 15) и начинается третья часть книги. Большое значение для радиоэлектроники имеют также электропроводность диэлектриков (гл. 16) и диэлектрические потери (см. гл. 17). При воздействии на диэлектрик высокого напряжения может произойти пробой. Вопросы пробоя (см. гл. 18) очень важны для изучения надежности как диэлектриков, так и всей радиоэлектронной аппаратуры в целом. Помимо электрических свойств диэлектрических материалов в ряде случаев определяющее значение имеют и общие физико-химические свойства (см. гл. 19) — механическая прочность, нагревостойкость, влагостойкость, химостойкость и т. п. Важнейшие современные электроизоляционные материалы рассмотрены в гл. 20 активные диэлектрики — в четвертой части книги.  [c.108]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку (до диаметра 0,01 м), ленты (до толщины 0,01 мм) и прокатываются в фольгу толщиной менее 0,01 мм. Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Характерной особенностью всех металлических проводниковых материалов является их электронная электропроводность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле. К холодной обработке (прокатка, волочение) Приходится прибегать для получения проводниковых изделий с повышенны.м пределом прочности при разрыве, например), при изготовлении проводов воздушных линий, троллейны.х  [c.176]

Ответ. У электроизоляционных материалов желательны большое удельное объемное сопротивление р, высокое пробивное напряжение Опр, малый и малая относительная диэлектрическая проницаемость Ег. В частности, для высокочастотных электроизоляционных материалов желательно, чтобы был мал коэффициент потерь е г=8г1 б (см. задачу 2-3). Электроизоляционные материалы предназначены препятствовать протеканию — безразлично, постоянного или переменного — тока, эти материалы имеют задачу поддерживать проводники, поэтому дополнительное нанесение электродов на них не практикуется. В этом их коренное отличие от диэлектриков в конденсаторах. Такие параметры, как р, С/цр> и е,, у электроизоляционных материалов должны быть стабильны по отношению к температуре, влажности, приложенному электрическому напряжению, времени.  [c.121]

Рабочий потенциал цинка по отношению к катодно защищаемой стали равен 200— 250 мВ, что значительно меньше потенциала магния (700 мВ). Такая величина потенциала цинка идеальна для морской воды нли других электролитов с низким удельным электрическим сопротивлением, но применение цинка в средах с более высоким удельным сопротивлением не всегда оправдано. Например, использование цинка не даст, по-видимому, существенного эффекта при защите больших подземных систем в почвах с высоким удельным сопротивлением. В то же время цинк оказался полезным материалом для защиты небольших подземных конструкций (таких как резервуары), помещенных в почву с удельным сопротивлением менее 3000 Ом см. В работе Оливе [19] обсуждается применение цинковых анодов для защиты подземного оборудования на бензоколонках в США. Более крупные системы, насчитывающие значительное число цинковых анодов, созданы для защиты стальных газовых магистралей в Хьюстоне и Новом Орлеане [20]. Из общего числа защитных анодов, равного 1200, почти 1000 — цинковые. Это является хорошим примером, показывающим, что при соответствующих почвенных условиях цинковые аноды можно использовать для защиты крупных подземных сооружений. Цинк довольно широко применяют для защиты труб малого диаметра, не имеющих защитных покрытий, а в последнее время его начинают все чаще использовать для защиты труб большого диаметра с покрытиями в зонах плотной застройки, что позволяет уменьшить взаимное коррозионное влияние соседних подземных коммуникаций. Цинковые аноды применяют также для защиты оцинкованных резервуаров для холодной воды.  [c.168]


Материалы, применяемые для изготовления технических термометров сопротивления, должны отвечать тем же обязательным требованиям, которые предъявляются к материалам, идущим на изготовление термоэлектрических термометров. Во-первых, это требование стабильности градуировочной характеристики и, во-вторых, требование воспроизводимости. Если не выполняется хотя бы одно из этих требований, материал не может быть использован для серийного изготовления технических термометров. Все другие требования высокая чувствительность, линейность градуировочной характеристики, большое удельное сопротивление и др. — являются не обязательными, а желательными. В настоящее время для изготовления термометров сопротивления применяются следующие металлы медь, платина и никель. Медь является дешевым материалом, который может быть высокой чистоты. Она может быть получена в виде тонких проволок в различной изоляции. Сопротивление меди изменяется с температурой практически линейно  [c.44]

Проводниковые материалы высокого сопротивления бывают металлические и неметаллические. Здесь рассматриваются только металлические, наибольшее применение среди которых имеют различные металлические сплавы. Классифицировать их можно по разным признакам, в том числе по области применения, определяющей и требования, предъявляемые к материалам. Материалы первой группы — для точных (прецизионных) электроизмерительных приборов и образцовых сопротивлений материалы второй группы — для резисторов (реостатов) различных назначений материалы третьей группы — с высокой рабочей температурой — для нагревательных приборов и нагрузочных реостатов. Ко всем этим материалам предъявляются следующие требования большое значение удельного сопротивления, достаточные механическая прочность и технологичность, обеспечивающие возможность получения проводок необходимых сечений и изготовления соответствующих изделий.  [c.256]

В настоящей главе будут рассмотрены электромагнитные процессы в системе индуктор—цилиндр с постоянными по всему сечению магнитной проницаемостью и удельным сопротивлением. Такое допущение с достаточной точностью позволяет получить основные количественные характеристики системы при глубине прогрева х , большей, чем горячая глубина проникновения Д . (см. 4-3 и 4-4), а также при нагреве немагнитных материалов. В последнем случае следует принимать значение удельного сопротивления, соответствующее температуре поверхности в рассматриваемый момент времени.  [c.169]

Для восстановления первоначальных магнитных свойств магнитомягкие материалы подвергают отжигу, который снимает внутренние напряжения и вызывает рекристаллизацию зерен. Магнитные свойства зависят от размера зерна. Поверхностные слои зерен вследствие искажения строения кристаллов характеризуются повышенной коэрцитивной силой. При мелкозернистом строении суммарная поверхность зерен в единице объема больше, чем при крупнозернистом материале, поэтому в материале, состоящем из мелких зерен, влияние поверхностных искажений слоев сказывается сильнее и у него коэрцитивная сила больше. Внутренние напряжения нередко связаны с наличием в материале различных загрязнений, например кислорода в чистом железе, примесей или присадок кобальта, хрома, вольфрама. Используя примеси, усложняющие кристаллическую решетку, вводя технологическую операцию закалки, а иногда добиваясь ориентации структуры доменов в магнитном поле, получают магнитотвердые материалы. При перемагничивании ферромагнетиков в переменных магнитных полях всегда наблюдаются тепловые потери энергии. Они обусловлены потерями на гистерезис и динамическими потерями. Динамические потери вызываются вихревыми токами, индуцированными в массе магнитного материала, а отчасти и так называемым магнитным последействием, или магнитной вязкостью. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше удельное сопротивление ферромагнетика, тем меньше потери на вихревые токи. Магнитное последействие особенно заметно проявляется в магнитомягких материалах в области слабых полей.  [c.272]

Термисторы представляют собой чувствительные к колебаниям температуры сопротивления, часто используемые для автоматического обнаружения, измерения и контроля физической энергии. Важнейшее отличие термисторов от других материалов с переменным сопротивлением заключается в их исключительной чувствительности к сравнительно малым изменениям температуры. В противоположность металлам, имеющим небольшой температурный коэффициент сопротивления, термисторы обладают большим отрицательным температурным коэффициентом. Обычно термисторы выполняют в виде бусинок, дисков или шайб и стержней. Их изготовляют из смесей окислов различных металлов, таких, как марганец, никель, кобальт, медь, уран, железо, цинк, титан и магний, со связующими материалами. Окислы смешивают в определенных пропорциях, обеспечивающих получение требуемого удельного сопротивления и температурного коэффициента сопротивления. Полученным смесям придают нужную форму и спекают в контролируемых атмосферных и температурных условиях. Окончательный продукт представляет собой твердый керамический материал, который можно монтировать различными способами в зависимости от механических, температурных и электрических требований.  [c.359]

Во многих случаях материалы защищают от коррозии нанесением покрытий (см. раздел 5). Многие органические покрытия, особенно тонкослойные, становятся с течением времени в некоторой мере электрически проводящими с удельными сопротивлениями <10= Ом-м . В таком случае беспористая поверхность с покрытием площадью 10 м , что например, соответствует поверхности 10 км трубопровода с условным проходом 300 мм, должна иметь сопротивление покрытия Ом. Более высокие сопротивления и свойства, практически соответствующие свойствам электрической изоляции, имеют, например, полиэтиленовые покрытия толщиной 1 мм и более (см. раздел 5.2). Напротив, вышеназванные слабо проводящие покрытия ведут себя в отношении химической коррозии аналогично оксидным покрытиям. Анодная промежуточная реакция затормаживается почти полностью, а катодная — лишь в незначительной степени. Таким образом, эти поверхности с покрытием становятся катодами, и в местах пор или повреждений в покрытии может произойти интенсивная сквозная коррозия. В особенности этого следует ожидать при большом содержании солей в коррозионной среде [10, 111. Для предотвращения местной коррозии около дефектов покрытия, которых практически нельзя избежать, необходимо либо обеспечить возможно более высокое сопротивление покрытия, либо применить катодную защиту от коррозии.  [c.135]


Типичное распределение напряжений в структурах адгезионно связанных композиционных материалов представлено на рис. 22.13. Как показано на рис. 22.14 [6], для простого нахлесточного соединения с увеличением длины перекрытия удерживающее удельное усилие возрастает пропорционально ширине, а сдвиговые напряжения в адгезионном слое остаются постоянными или даже падают. Испытания, проведенные для различных адгезивов, Показывают, что материалы с низким модулем (податливые связующие) обладают большим сопротивлением сдвиговым напряжениям с ростом длины перекрытия.  [c.393]

Высокочастотные (иидукцноиные) испарители обеспечивают требуемую температуру нагревом вихревыми токами, создаваемыми высокочастотным полем. Метод пригоден для испарения материалов с большим удельным сопротивлением. Испаряемый материал помещается в тигель из тугоплавкой керамики.  [c.426]

Пористые высокогеплопроводные металлы используются также и при изготовлении теплообменников сосредоточенного теплообмена (дискретного типа) для получения сверхнизких температур. Предельно развитая поверхность теплообмена пористой структуры позволяет уменьшить граничное термическое сопротивление Калицы, вызывающее температурный скачок на границе раздела жидкость - твердое тело, через которую передается теплота. Такой теплообменник представляет собой блок, содержащий две камеры, заполненные проницаемым высокотеплопроводным материалом с большой удельной поверхностью Обьпшо и пористая матрица и блок выполняются из меди. При растворении Не в Не на пористой насадке в одной из камер температура получаемой смеси может понизиться до 0,011 К. За счет этого происходит охлаждение всего блока и протекающего через другую камеру потока Не .  [c.17]

Удельное сопротивление — важнейшая характеристика свариваемого материала при контактной сварке. С его увеличением в соответствии с законом Ленца — Лжоуля уменьшается необходимая для сварки сила тока (при неизменной длительности процесса). Металлы и сплавы, обладающие высоким удельным сопротивлением (табл. 1), могут свариваться на машинах относительно малой мощности и, наоборот, для сварки материалов с низким удельным сопротивлением (меди, алюминия и большинства их сплавов) обычно необходимы машины большой мощности.  [c.18]

Печь с электромагнитным экраном изображена па рис. 14-7. Печь имеет замкнутый экран (кожух) I из металла с низким удельным сопротивлением, расположенный между индуктором 2 и корпусом 3. Материалом экрана служит медь, а при больших размерах — менее дефицитный алюминий. Толщина экрана должна быть больше, чем полторы глубины проникновения тока в материал. При меньшей толщине напряженность магнитного поля за экраном уменьпштся недостаточно.  [c.236]

Несущие авиаконструкции изготавливаются, как правило, из высокопрочных материалов, имеющих большую удельную прочность,— алюминиевых сплавов с Оь > 400 МПа, титановых сплавов с Оь > 900 МПа, сталей с Оь > 1600 МПа. Кроме того, для авиаконструкций характерно огромное число концентраторов напряжений. Отверстия под болты и заклепки, а их сотни тысяч в конструкции одного транспортного самолета, сварные щвы, вырезы для окон, дверей и люков, переходы толщины и т. п. создают потенциальную опасность усталостного разрушения. Из сказанного следует, что ресурс планера самолетов, по существу, определяется сопротивлением его элементов циклическим нагрузкам и деформациям.  [c.104]

Именно удачное сочетание сравнительно высоких магнитных свойств с высоким удельным сопротивлением обеспечило ферритам широкое применение в высокочастотной технике. Ферриты изготовляют в виде требуемых деталей по принципу керамической технологии измельчение исходного сырья до состояния мелкодисперсного порошка, формование деталей и обжиг. Формование может производиться разными методами прессование порошков в стальных формах при давлениях 100—300 МПа, выдавливание из мундштука массы из порошков с добавкой органической связки (поливиниловый спирт, парафин). Ферриты могут быть из смеси порошков окислов и из сернокислых солей соответствующих металлов. При обжиге происходит ферритизация смеси окислов в случае использования солей металлов происходит их разложение на стадии предварительного обжига, причем протекает в известной мере и процесс ферритизации. В силу особенностей условий технологических процессов получения ферритов из солей металлов они обладают более совершенной степенью ферритизации, чем материалы, получаемые непосредственно из окислов, вследствие чего последние, как правило, обладают худшими электромагнитными свойствами. Однако получение ферритов из смеси солей металлов более сложно и требует большего расхода сырья.  [c.311]

Жаростойкими проводниковыми материалами являются сплавы на основе никеля, хрома и некоторых других компонентов. Жароупорность этих сплавов, т. е. их неокисляемость даже при высоких температурах, обусловлена образованием на их поверхности окисной пленки большой сплошности, исключающей доступ кислорода к сплаву. Основой жаростойких окисных пленок является окись хрома (СгаОз) и закись никеля (N10), которые не испаряются с поверхности сплава при высоких температурах. Жаростойкие проводниковые материалы на основе никеля, хрома и алюминия называются соответственно нихромами, фехралями и хромалями. Все они представляют собой твердые растворы металлов с неупорядоченной структурой, поэтому эги сплавы обладают большим удельным сопротивлением и малыми значениями температурного коэффициента сопротивления.  [c.105]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут протягиваться в тонкую проволоку (до диаметра 0,01 мм) и ленты (до толщины 0,01 мм). Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Характерной осббенностью всех металлических проводниковых материалов является их электронная электропроводность.  [c.207]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку (до диаметра 0,01 м) и ленты (до толщины 0,01 мм) н прокатываться в фольгу тoлш шoй менее 0,01 мм. Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле. К холодной обработке (прокатка, волочение) приходится прибегать для получения проводниковых изделий с повышенным пределом прочности при растяжении, например при Изготовлении проводов воздушных линий, троллейных проводов и t. д. Чтобы вернуть деформированным металлическим проводникам прежнюю величину удельного сопротивления их подвергают тер.мической обработке — отжигу, без доступа кислорода. Характерной особенностью всех ме. таллических проводниковых материалов является их электронная электропроводность.  [c.142]

Резюмируя, можно утверждать следующее удельный сигнал датчика Гайлинга не зависит от его толщины в датчиках с отношениями теплопроводностей, равными отношениям электрических сопротивлений, сигнал не накапливается по длине — датчик не работает максимальные значения сигналов свойственны контрастным парам материалов с большими значениями относительных тепло- и электропроводностей для всех конструктивных характеристик косослойных датчиков существуют оптимальные соотношения.  [c.110]


Выбор металла открывает большие возможности снижеиня массы изделия. Наибольшая экономия металла может быть получена при использовании прочных и высокопрочных сталей, а также сплавов с высокой удельной прочностью (алюминиевых, титановых). Снижению массы изделия способствует применение более прочных холоднокатаных элементов вместо горячекатаных, а также использование термообработки. Однако повышение прочности металла нередко сопровождается ухудшением его свариваемости или снп-жение.м сопротивления разруше.иио. Поэтому экономия металла за счет повышения его прочности целесообразна только при учете всех этих факторов. Большие перспективы имеет применение композиционных материалов, например двухслойных сталей.  [c.6]

Терморезисторы (термисторы), отличающиеся большой абсолютной величиной отрицательного температурного коэффициента сопротивления, изготовляют на основе некоторых окислов, в частности окилов меди, марганца, кобальта, железа, цинка. Чаще всего используют смеси нескольких окислов, так как при этом удается получить требующиеся свойства. Сами материалы для терморезисторов изготовляют в виде шайб, стерженьков, бусинок методом керамической технологии подготовка (измельчение) компонентов, приготовление соответствующей смеси, прессование заготовок и их обжиг. В качестве примеров терморезисторных материалов можно указать на составы из смеси окислов меди и марганца (применяются для изготовления серийных терморезисторов типа ММТ), окислов кобальта и марганца (для типа КМТ). В зависимости от соотношения окислов меди uaO и марганца МП3О4 материалы имеют удельное сопротивление от 1,0 до 10 Ом-м. Для изготовляемых из этих окислов терморезисторов ММТ рабочая температура не должна превышать 120° С. Температурный коэффициент сопротивления терморезисторов ММТ в пределах от — 0,24 до — 0,034° С , у терморезисторов КМТ в пределах от — 0,045 до — 0,06° В качестве материалов для терморезисторов применяют и чистую окись марганца.  [c.286]

Сушилки шахтного типа (рис. 4-1,е) при сравнительной простоте устройства имеют много недостатков, одним из которых является трудность достижения равномерности омывания каждого зерна материала при его движении сверху вниз под действием собственного веса. Газы — сушильный агент — стремятся пройти по линии наименьшего сопротивления около стен, оставляя центральную часть шахты без достаточного газопро-ницания, материал же в свою очередь слабо перемешивается, опускаясь вниз, так что высушивание его в центральных участках сильно отстает. Сушилки периодического действия имеют еще большую неравномерность, не говоря уже о повышенных удельных расходах тепла. Поэтому одним из усовершенствований может быть перевод их -на непрерывную работу. Загрузочное устройство должно укладывать шихту с большей плотностью у стен. Для обеспечения равномерности потоков сушильного агента шахту можно оборудовать регулирующими распределение жалюзийными решетками (рис. 4-11). Наклон решеток должен быть рассчитан на скатывание сыпучего под действием собственного веса. Скорость. вы-хода и ширина щели обусловливают дальнобойность струи и ее проникновение в шихту. Они должны быть больше при мелкозернистом материале, так как в нем  [c.151]

Если напряжение на электродах больше определенного значения, так называемого напряжения зажигания, то электрическая дуга возникает как при постоянном, так я при переменном токе. Величина этого напряжения зависит от температуры слоя, давлениян рода псевдоожнжающего газа, а также от свойств частиц слоя. При повышении температуры слоя уменьшается удельное сопротивление большинства твердых материалов и в сочетании с возрастающей проводимостью газовой фазы это увеличивает тенденцию к образованию дуговых разрядов в слое. Диаметр частиц слоя и форма их также играют важную роль.  [c.179]

Величина удельного электрического сопротивлешя р обусловливает возможность сосредоточить большую тепловую мощность в малом объеме металла. Чем выше удельное электрическое сопротавлеше материала, тем в меньшем отрезке нагревателя можно выделить требуемую тепловую энергию. Практика показывает, что эта зависимость не всегда легко воспринимается. При беглом анализе часто приходят к ошибочному выводу. При этом обычно рассуждают следующим образом если подсоединить к источнику напряжения одинаковые по размерам отрезки проволоки из меди ( р 0,01 мкОм м) и нихрома ( р 1,0 мкОм м), то при одинаковом напряжении U через медную проволоку пойдет больший ток /( / = U R, где R - электрическое сопротивление отрезка проволоки). Таким образом, в медной проволоке выделится больше тепла и, следовательно, в материале с низким р, при прочих равных условиях, легче получить большее выделение тепловой энергии. Вывод диаметрально противоположен выше изложенному, ошибка в неправильных исходных данных и условиях задачи. При проектировании электронагревательного устройства необходимо выбрать тепловую мощность Р = = /R. Тогда, при определенном значении R и при одинаковом сечении провод с большим р будем короче, т.е. заданная тепловая мощность будет выделяться в меньшем объеме нагревателя.  [c.7]


Смотреть страницы где упоминается термин Материалы с большим удельным сопротивлением : [c.150]    [c.367]    [c.254]    [c.102]    [c.21]    [c.304]    [c.296]    [c.279]   
Смотреть главы в:

Электротехнические материалы  -> Материалы с большим удельным сопротивлением

Электротехнические материалы Издание 3  -> Материалы с большим удельным сопротивлением



ПОИСК



Проводниковые материалы с большим удельным сопротивлением

Сопротивление материало

Сопротивление материалов

Сопротивление удельное



© 2025 Mash-xxl.info Реклама на сайте