Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Удельное сопротивление чистых металлов

Зависимость удельного сопротивления чистого металла от температуры  [c.193]

При высоких температурах колеблющиеся атомы решетки могут рассматриваться как независимые беспорядочные центры рассеяния и поэтому вероятность рассеяния зависит от среднеквадратичной амплитуды решеточных колебаний X . Среднеквадратичная амплитуда гармонических колебаний пропорциональна Т. Таким образом, если пренебречь тепловым расширением, удельное сопротивление чистого металла в области высоких температур должно быть пропорционально Т. Действительно, для простого гармонического осциллятора с массой М на основании теоремы о равном распределении энергии по степеням свободы можно записать  [c.193]


На рис. 7.6, а схематически показана кривая зависимости удельного сопротивления чистых металлов от температуры, достаточно хорошо подтверждаемая экспериментально (рис. 7.6, б).  [c.188]

Рис. 7.6. Зависимость удельного сопротивления чистых металлов от температуры Рис. 7.6. Зависимость удельного сопротивления чистых металлов от температуры
Удельное сопротивление чистых металлов  [c.116]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку (до диаметра 0,01 м), ленты (до толщины 0,01 мм) и прокатываются в фольгу толщиной менее 0,01 мм. Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Характерной особенностью всех металлических проводниковых материалов является их электронная электропроводность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле. К холодной обработке (прокатка, волочение) Приходится прибегать для получения проводниковых изделий с повышенны.м пределом прочности при разрыве, например), при изготовлении проводов воздушных линий, троллейны.х  [c.176]

Зависимость удельного сопротивления чистых металлов от температуры не может быть удовлетворительно объяснена в рамках классической электронной теории электропроводности. В современной квантовой теории электропроводности металлов доказывается, что при всех температурах, кроме абсолютного нуля, свободные электроны испытывают такие взаимодействия с узлами кристаллической решетки металла, что среднее время Т свободного пробега электронов в области средних температур обратно пропорционально абсолютной температуре Т металла  [c.220]

Так как для сплавов р обычно много больше р , то вплоть до высоких температур их удельное сопротивление меняется с температурой значительно слабее, чем у чистых металлов, и температурный коэффициент сопротивления сплавов, как правило, значительно ниже температурного коэффициента сопротивления чистых металлов.  [c.190]


Титан — тугоплавкий металл [температура плавления (1665 5) С], плотность 4500 кг/м . Временное сопротивление чистого титана = 250 МПа, относительное удлинение б =70 %, он обладает высокой коррозионной стойкостью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей. Поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40 %. Одпако титан имеет низкую жаропрочность, так как при температурах выше 550— 600 °С легко окисляется и поглощает водород. Титан хорошо обрабатывается давлением, сваривается, из него изготовляют сложные отливки, но обработка его резанием затруднительна.  [c.19]

Выше отмечалось, что при низких температурах в почти чистых металлах удельное сопротивление сильно зависит от концентрации примесей и дефектов. Интересные эффекты наблюдаются, когда очень малое количество магнитного металла растворено в каком-либо немагнитном металле. Эти эффекты возникают, когда растворенная магнитная примесь образует то, что называется локализованными магнитными моментами. Вопрос о том, будет ли локализованный момент возникать в конкретном разбавленном сплаве, слишком сложен, чтобы рассмат-  [c.195]

Таблица 21.1. Удельное сопротивление р , температурный коэффициент при О °С и характеристическая температура 6 чистых металлов [1,2 Таблица 21.1. <a href="/info/43842">Удельное сопротивление</a> р , <a href="/info/18876">температурный коэффициент</a> при О °С и <a href="/info/18431">характеристическая температура</a> 6 чистых металлов [1,2
В основе электротехнических угольных материалов лежат графит и уголь — разновидности почти чистого углерода, являющегося полупроводником, вследствие чего графит и уголь имеют отрицательный температурный коэ( ициент удельного сопротивления, хотя по проводимости они немногим уступают металлам и их сплавам, в силу чего в различных электротехнических устройствах угольные изделия используются как проводящие элементы. Важнейшими видами электротехнических угольных изделий являются 1) щетки для электрических машин 2) угольные электроды (для электрических печей, электролитических ванн и сварки) 3 осветительные угли 4) непроволочные сопротивления  [c.264]

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление р (около 0,1 мкОм-м) значение р стали, т. е. железа с примесью углерода и других элементов, еще выше.  [c.203]

Для определения результирующих потоков излучения необходимо располагать данными по коэффициентам излучения. Коэффициент излучения является сложной функцией, зависящей от природы излучающего тела, его температуры, состояния поверхности, а для металлов — от степени окисления этой поверхности. Для чистых металлов с полированными поверхностями коэффициент излучения имеет низкие значения. Так, при температуре 100 °С коэффициент излучения по отношению к его величине для абсолютно черного тела не превышает 0,1. Металлы характеризуются высокой отражательной способностью, так как из-за большой электропроводности луч проникает лишь на небольшую глубину. Для чистых металлов коэффициент излучения может быть найден теоретическим путем. Относительный коэффициент (степень черноты) полного нормального излучения для них связан с удельным электрическим сопротивлением рэ зависимостью  [c.385]

Помимо уменьшения толщины пленки повышение удельного сопротивления можно добиться путем использования ряда явлений в чистых металлах, сплавах и композициях.  [c.434]


Пленки хрома, как и большинство резистивных пленок чистых металлов, состоят из относительно чистых островков металла в матрице изолирующей окиси хрома. Обнаружено (рис. 8), что пленки с минимальным удельным сопротивлением могут быть получены только при одном сочетании температуры подложки и скорости осаждения.  [c.435]

Способность к взаимному растворению и образованию однородных растворов присуща не только жидкостям, но и твердым кристаллическим веществам. Твердые фазы, в которых отношения между составными частями (компонентами) могут изменяться без нарушения однородности, называются твердыми растворами. Твердые растворы металлов обнаруживают под микроскопом, подобно чистым металлам, структуру, состоящую из однородных зерен. Твердым растворам присущи многие свойства, характерные для жидких растворов. Здесь также наблюдаются явление диффузии при соответствующей температуре и стремление благодаря этому к химической и физической однородности. Твердые растворы могут изменять свой химический состав без внезапного изменения физических свойств. Твердость, удельное электрическое сопротивление и другие свойства твердых растворов меняются непрерывно по мере изменения состава.  [c.206]

Добавление к платине или палладию элементов, упомянутых выше в этом разделе, приводит к изменению физических свойств, которое даст некоторые практические преимущества сплавам перед чистыми металлами. Вообще легирующие элементы обычно повышают удельное электрическое сопротивление, твердость и предел прочности при растяжении этих металлов. Добавление других металлов платиновой группы или золота способствует повышению стойкости их против потускнения и коррозии при действии различных химикалий.  [c.497]

Электросопротивление алюминия высокой чистоты (99,99 %) при температуре 20 °С составляет 2,6548-10 Ом-м (0,0265 МКОМ М). В интервале температур 273—300 К температурная зависимость электрического сопротивления чистого алюминия почти линейна при постоянном коэффициенте 1,15-10 Ом-м-К . Электрическая проводимость алюминия в значительной степени зависит от чистоты металла, причем влияние различных примесей на электрическое сопротивление зависит не только от концентрации данной примеси, но и от ее нахождения в твердом растворе или вне его. Наиболее сильно повышают сопротивление алюминия примеси хрома, лития, марганца, магния, титана и ванадия [5]. Удельное электросопротивление р (мкОм м) отожженной алюминиевой проволоки в зависимости от содержания примесей (%) можно приближенно определить по следующей формуле [9]  [c.12]

Чистые металлы обладают малым удельным сопротивлением, которое находится в пределах 0,0150...0,105 мкОм м. Сплавы имеют более высокие значения удельного сопротивления в пределах 0,30.. 1,8 мкОм м.  [c.6]

Многие металлы обладают наряду с малым удельным сопротивлением хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку диаметром до 0,01 мм и прокатываться в фольгу толщиной менее 0,01 мм. Сплавы могут иметь большую механическую прочность, обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги.  [c.6]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут протягиваться в тонкую проволоку (до диаметра 0,01 мм) и ленты (до толщины 0,01 мм). Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Характерной осббенностью всех металлических проводниковых материалов является их электронная электропроводность.  [c.207]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку (до диаметра 0,01 м) и ленты (до толщины 0,01 мм) н прокатываться в фольгу тoлш шoй менее 0,01 мм. Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле. К холодной обработке (прокатка, волочение) приходится прибегать для получения проводниковых изделий с повышенным пределом прочности при растяжении, например при Изготовлении проводов воздушных линий, троллейных проводов и t. д. Чтобы вернуть деформированным металлическим проводникам прежнюю величину удельного сопротивления их подвергают тер.мической обработке — отжигу, без доступа кислорода. Характерной особенностью всех ме. таллических проводниковых материалов является их электронная электропроводность.  [c.142]

Таким образом, при описании результатов измерений удельного сопротивления чистых металлов в области температур, где электрон-фононное рассеяние стремится к нулю по занояу пропорционально i по-видимому, следует учитывать квадратичный член, обусловленный электрон-электронным взаимодейств1 ем. В обзоре [31] показано, что у чистых переходных металлов при температуре жидкого гелия электрон-электронное сопротивление может на порядок превосходить электрон-фоиоиное. Например, у вольфрама рее/рер=90, молибдена— 60, ру гения и платины— laO и т. д.  [c.32]

Теорию Займана можно использовать для вычисления удельного сопротивления чистых жидких металлов из экспериментальных данных по дифракции. Это было сделано для нескольких металлов [316, 317]. В большинстве случаев совпадение всегда было хорошим, однако пока не ясно, теория или данные по дифракции являются источником расхождения. Теория Займана основана на существенных допушениях, наиболее значительное из которых модель почти свободных электронов. Использование ее при изучении жидких металлов уже критиковалось [312, 318]. На основании экспериментальных исследований допускается, что модель почти свободных электронов можно применить к щелочным металлам и, возможно, немногим металлам с более высокой валентностью, но вообще средний свободный пробег электрона, определенный экспериментально, короче предсказанного на основании модели свободных электронов. Это особенно относится к жидким металлам со сложной структурой, таким, как галлий, в то время как в олове, к нашему удивлению, электроны ведут себя почти как свободные [319]. Поэтому использование теории Займана для некоторых металлов ставится под вопрос.  [c.108]


В табл. 19.1 представлены значения удельного сопротивления и температурного коэффициента сопротивления чистых металлов, а также, в некоторых случаях, отношение удельного сопротивления при температуре жидкого гелия к удельному сопротивлению при нормальных условиях, р4.2°к/р273 к, характеризующее достигнутую степень чистоты материала. В тех случаях, когда для данного металла приводятся более подробные данные, соответствующее указание дается в первом столбце таблицы. Металлы в таблице расположены в порядке возрастания массового числа.  [c.304]

Из приведенных данных видно, что квадратичные относительно концентрации с члены появились только при определении р2 и они указывают на правило Нордхейма. Наоборот, р1 должно изменяться приблизительно линейно между рА и рв — удельными сопротивлениями чистого растворителя и чистого растворенного металла. Общее поведение, найденное для жидких сплавов, зависит от того, какое из слагаемых — р1 или р2 преобладает в  [c.76]

Удельное электрическое сопротивление медных и серебряных покрытий с включениями посторонних веществ при определанной температуре резко повышается. Оно падает с очень высоквго тачального значения почти до значения сопротивления чистого металла, но всегда оставаясь выше этого значения. Это объясняется образованием пор вследствие появления газов при распаде посторонних веществ. Усиленное образование пар также является причиной наблюдаемого при высоких температурах обратного повышения сопротивлания. По сравнению с изменением тве,рдости, которая уменьшается ступенчато, электрическое сопротивление имеет лишь одно колебание, зависящее от вида включений. Это температурное колебание чаще всего лежит значительно ниже температуры размягчения.  [c.98]

Удельное электрическое сопротивление металлов от наклепа возрастает. По данным Б. Г. Лившица [12], удельное электрическое сопротивление чистых металлов (алюминий, медь, серебро, железо и др.), измеренное при комнатной температуре, возрастает от наклепа на 2—6%. При различных удельных сопротивлениях наклепанных и ненаклепанных металлов режимы сварки для них будут различными.  [c.8]

Пластическая деформация повышает удельное электрическое сопротивление па несколько процентов. Только электросопротивление вольфрама при значительной деформации возрастает на десятки процентов. Согласно правилу Маттиссена, удельное электрическое сопротивление чистых металлов и твердых растворов низкой концентрации можно представить в виде  [c.55]

Простая модель электронного газа, созданная Друде в 1900 г., успещно предсказала законы Ома и Видемана — Франца. Однако она не объяснила зависимость электропроводности от температуры, а также магнитные свойства и малую величину электронной теплоемкости по сравнению с классическим значением 3/ . В настоящее время ясно, почему удельное сопротивление особо чистых металлов падает от типичного для комнатных температур значения 10 мкОм см до значения менее 10 з мкОм -см при температуре жидкого гелия в то время как удельное сопротивление концентрированного сплава падает всего в два раза в том же диапазоне температур. Поведение полупроводников также хорошо понято удельное сопротивление экспоненциально возрастает при уменьшении температуры, и при очень низких температурах чистые полупроводники становятся хорошими диэлектриками. Добавка в образец полупроводника небольшого количества примесей чаще всего существенно уменьшает удельное сопротивление (в противоположность чистым металлам, в которых наличие примесей ведет к увеличению удельного сопротивления).  [c.187]

Прежде чем перейти к подробному обсуждению зависимости удельного сопротивления металлов и полупроводников от температуры, коснемся особенностей поведения концентрированных сплавов. Введение значительного количества примесных атомов в твердый раствор приводит к искажению кристаллической решетки. Вследствие этого появляется дополнительный вклад в рассеяние. Его величина почти не зависит от температуры и может во много раз превышать долю электрон-фонон-ного рассеяния в чистом металле. Изменение остаточного удельного сопротивления неупорядоченного сплава Си—Аи в зави-  [c.191]

Однако нри измерении сонротивленпя чистых металлов ири низких температурах приходится преодолевать специфические трудности. Для иллюстрации рассмотрим, например, случай измерения сопротивления чистого натрия нри HnsKoii температуре. Удельное сопротивление натрия  [c.171]

Поэтому значение удельной проводимости у (или удельного сопротивления р) в основном зависит от средней длины свободного пробега электронов в данном проводнике X, которая, в свою очередь, олределяется структурой проводникового материала. Все чистые металлы с наиболее правильной кристаллической решеткой харак-т( ризуются наименьшими значениями удельного сопротивления поимеси, искажая решетку, приводят к увеличению р. К такому же выводу можно прийти, исходя из волновой природы электронов. Рассеяние электронных волн происходит на дефектах кристалличе-С1 ой решетки, которые соизмеримы с расстоянием около четверти  [c.191]

Электрические свойства КЭП. В результате исследования серебряных и медных покрытий было показано, что значения тепло- и электроироводимости КЭП имеют такой же порядок, что и значения этих величин для чистых металлов [1, с. 52]. При нагрузке 0,05—2 Н переходные сопротивления серебряных покрытий и покрытий серебро — корунд близки и составляют 0,5—1,5 мОм. Значения сопротивлений покрытий медь — графит, медь — дисульфид молибдена и медь — корунд были почти одинаковы со значениями сопротивления медных покрытий. При измерении сопротивления спеченных композиций Си—ВеО, Си—АЬОз Ag—AI2O3 было выявлено, что удельная электропроводимость материалов составляет соответственно 46—49 48—51 и 42— 52 МСм/м, в то время как для меди эта величина равна 58 МСм/с, а для серебра 62 МСм/м.  [c.105]

По мере понижения температуры удельное сопротивление металлов и сплавов стремится к некоторому постоянному значению — остаточному удельному сопротивлению ро. Оно сильно зависит от концентрации дефектов решетки (повышается с увеличением концентрации). Остаточное удельное сопротивление практически не зависит от температуры, так что р = р(Т)-Еро, где р(Т)—зависящая от температуры составляющая удельного сопротивления бездефектного (чистого) металла (правило Маттиссена).  [c.295]

А. А. Смирнов теоретически рассчитал остаточное сопротивление упорядочивающихся сплавов в зависимости от состава и степени дальнего порядка. Автор исходил из предположения, что упорядоченный сплав при абсолютном нуле, как и чистый металл, не имеет электрического сопротивления и что оно появ-.чяется только при нарушении порядка в расположении атомов. Учитывая связь между средни.м временем свободного пробега и вероятностью рассеяния электронов при разупо-рядочении, автор пришел к следующему выражению для остаточного удельного сопротивления р = а[с(1—с)— 4 (1—v)тl-], где с—относительная атомная концентрация компонента А в сплаве V — относительная концентрация узлов решетки, предназначенных для атомов этого компонента а—коэффициент, зависящий от природы компонентов ц — степень дальнего порядка ц (р—с)/(1—м), где р — число мест, занятых своими атомами.  [c.302]



Смотреть страницы где упоминается термин Удельное сопротивление чистых металлов : [c.289]    [c.220]    [c.33]    [c.172]    [c.70]    [c.114]    [c.276]    [c.194]    [c.217]   
Смотреть главы в:

Структура жидких металлов и сплавов  -> Удельное сопротивление чистых металлов



ПОИСК



Сопротивление металлов

Сопротивление удельное

Удельное сопротивление металло

Чистые металлы —



© 2025 Mash-xxl.info Реклама на сайте