Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб элементов конструкций

В поисках жесткости конструкции в общем случае следует стремиться заменить изгиб элемента конструкции растяжением или сжатием. Если это невыполнимо, то надо искать возможности уменьшить пролет  [c.31]

В случаях, когда изделие имеет форму рамы с разрушенным плечом, нагрев в месте сварки в результате теплового расширения металла приведет к изгибу элементов конструкции и к возможности ее излома в новых, обычно наиболее слабых местах (отмеченных стрелками на фиг. 58, б). В таких изделиях применяется предварительный подогрев целого плеча (в районе а на фиг. 58, б) с расчетом создать в нем равномерную тепловую деформацию, примерно равную той, которая будет в момент заварки трещины в разрушенном плече.  [c.112]


В приводе подвесного конвейера (рис. 400, п), состоящего из редуктора 1, конической передачи 2 и цилиндрических зубчатых колес 3, передающих вращение приводной звездочке 4 цепной передачи, силовая схема нерациональна. Опорные узлы передачи, крепежные болты и фундаменты нагружены усилиями привода значительная часть элементов конструкции работает на изгиб. Узлы привода разобщены, установлены на разных основаниях и не зафиксированы один относительно другого. Для того чтобы добиться удовлетворительной работы механизмов, нужна ропотливая регулировка взаимного расположения механизмов.  [c.551]

При исследовании напряженного состояния элементов конструкций наиболее часто приходится иметь дело с плоским (двухосным) напряженным состоянием. Оно встречается при кручении, изгибе и сложном сопротивлении. Поэтому на нем мы остановимся несколько подробнее.  [c.163]

Расчет на изгиб с учетом сил инерции приходится проводить в том случае, когда элементы конструкций в процессе эксплуатации испытывают большие ускорения, вызывающие значительные инерционные усилия. Классическим примером деталей, прочные размеры которых следует выбирать из условия расчета на изгиб с учетом сил инерции, являются спарники локомотивов и шатуны двигателей.  [c.308]

Влияние состояния поверхности. В большинстве случаев поверхностные слои элемента конструкции, подверженного дей- ствию циклических нагрузок, оказываются более напряженными, чем внутренние (в частности, это имеет место при изгибе и л  [c.607]

При выборе материала для какого-либо элемента конструкции в последующих расчетах необходимо знать механические свойства материала, определяющие его прочность, упругость, твердость п пластичность. Необходимые сведения о различных механическ п.х свойствах материалов получают экспериментально в процессе механических испытаний на растяжение, сжатие, срез, кручение и изгиб.  [c.167]

Под прикладной теорией упругости понимают обычно раздел теории упругости, в котором кроме предположения об идеальной упругости материала вводятся дополнительные упрощающие гипотезы, такие как гипотезы плоских сечений или об отсутствии взаимодействия между продольными волокнами стержня в сопротивлении материалов. Так, например, для пластин и оболочек вводится упрощающая гипотеза о прямолинейном элементе, ортогональном к срединной поверхности как до, так и после деформации и др. В основном в прикладной теории упругости изучаются расчеты на изгиб и устойчивость тонкостенных элементов конструкций тонкостенные стержни, пластины, оболочки.  [c.185]


На рис. В. 10 —В. 18 приведены примеры стержневых элементов конструкций из разных областей техники, взаимодействующих с потоком жидкости или воздуха. На рис. В. 10 показана якорная система удержания плавающих объектов. Якорные тросы в ряде случаев рассматривать как абсолютно гибкие стержни нельзя, так как они обладают значительной жесткостью на изгиб и кручение. На рис. В.11 приведена система для охлаждения жидкости, которая протекает в трубках (система охлаждения реакторов). Трубки с жидкостью находятся в потоке. Для более интенсивного охлаждения трубки должны быть с очень тонкими стенками, поэтому аэродинамические силы, зависящие от скорости потока Vo, могут вызвать большие напряжения в трубках (в статике) или вызвать  [c.8]

На практике часто на элементы конструкции действуют нагрузки, вызывающие возникновение нескольких видов деформации, в частности, одновременное действие изгиба с растяжением или сжатием.  [c.309]

Отдельная глава посвящена расчету элементов конструкций с учетом ползучести расширен по сравнению с другими сборниками задач состав задач по вопросам усталостной прочности включен параграф, посвященный расчету тонкостенных стержней замкнутого профиля на стесненное кручение. В отдельные параграфы выделены вопросы нелинейного деформирования элементов конструкций. В главе Устойчивость и продольно-поперечный изгиб стержней помещены задачи, которые помогут студентам приобрести не только навыки расчетов на устойчивость, но и уяснить понятие критического состояния системы и применяемого в исследовании устойчивости метода Эйлера. Креме того, решение этих задач подготовит студентов к более успешному освоению курса устойчивости сооружений.  [c.3]

При расчете элементов конструкций, работающих на изгиб, с использованием условий прочности (6.6) решаются три типа задач.  [c.51]

Принято считать тему Кручение одной из основных и важнейших в курсе. Такая оценка обусловлена не каким-либо особым практическим значением этой темы хорошо известно, что элементы конструкций редко работают на чистое кручение. Важнее развивающее и методическое значение темы в ней впервые перед учащимися раскрывается общий подход к определению напряжений (выводу формул), они впервые сталкиваются с неравномерным распределением напряжений по сечению, с новыми геометрическими характеристиками сечений. Конечно, и практическое значение темы достаточно велико, так как в сочетании с изгибом или растяжением (сжатием) кручение встречается в расчетах деталей машин достаточно часто.  [c.101]

Безусловно, вопрос о расчете балок переменного сечения надо увязать с экономичностью конструкции. Следующим шагом на пути создания экономичных конструкций будет применение брусьев равного сопротивления изгибу. Некоторые преподаватели считают, что рассматривать такие брусья в курсе сопротивления материалов необходимо для последующего изучения расчета на изгиб зубьев колес в деталях машин. Пожалуй, это не совсем так, поскольку найти опасное сечение зуба (по номинальным напряжениям) можно и не вписывая в него брус равного сопротивления при этом способ,, не связанный с брусом равного сопротивления, более доходчив. Главная цель рассмотрения брусьев равного сопротивления состоит в расширении представлений учащихся о путях обеспечения экономичности элементов конструкций и, конечно, в расширении их технического кругозора.  [c.138]

Практическое значение рассматриваемой темы для различных специальностей техникумов далеко не равноценно. В машиностроении с расчетами сжатых стержней на устойчивость приходится встречаться при проектировании металлических конструкций подъемно-транспортных машин, грузовых, нажимных и ходовых винтов, штоков поршневых машин, элементов конструкций летательных аппаратов Для учащихся немашиностроительных специальностей эта тема имеет только развивающее и почти никакого прикладного значения. Наиболее часто с расчетами на устойчивость приходится встречаться (в дальнейшем при изучении специальных предметов и в будущей практической деятельности) учащимся строительных специальностей. При этом последние ведут расчеты по СНиПам, т. е. пользуясь коэффициентами продольного изгиба, а не формулой Эйлера и эмпирическими зависимостями.  [c.188]


Поперечному изгибу обычно подвергаются элементы конструкций, называемые балками. Балка —это стержень, работающий на изгиб. Поперечный изгиб возникает в том случае, если система внешних силовых факторов (сосредоточенные силы Н, кН), моменты (Н-м, кН-м) или распределенные нагрузки (Н/м, кН/м) действуют в одной плоскости, которая совпадает с одной из плоскостей симметрии балки (рис. 10.1.1). Здесь силы Рь Рг и Рз выступают  [c.136]

Ранее рассматривались простейшие виды деформации растяжение— сжатие, сдвиг, кручение, поперечный изгиб. На практике такие простые деформации встречаются весьма редко. Как правило, на детали машин и элементы конструкций действует комбинация внешних силовых факторов, создающих несколько простых деформаций. Например, любой вал одновременно испытывает изгиб, кручение и сдвиг, даже простая деталь — болт работает на сложную деформацию на него одновременно действуют растяжение и кручение.  [c.222]

Совместной деформации поперечного изгиба и кручения подвергаются все виды валов, встречающихся в практике. Нельзя путать понятия вала и оси. Конструктивно эти детали машин не отличаются. Их различие состоит в восприятии нагрузки. Если элемент конструкции воспринимает одновременно поперечный изгиб и кручение, то это вал, если же точно такой же элемент конструкции несет только изгибающую нагрузку, то это ось.  [c.233]

Если при статическом изгибе концентрация напряжений не представляет собой опасности, особенно для элементов конструкций, изготовленных из пластичных материалов, то в случае динамических и повторно-переменных нагрузок вопросам концентрации должно уделяться особенно большое внимание (см. гл. 21).  [c.289]

Влияние состояния поверхности. В большинстве случаев поверхностные слои элемента конструкции, подверженного действию циклических нагрузок, оказываются более напряженными, чем внутренние (в частности, это имеет место при изгибе и кручении). Кроме того, поверхность детали почти всегда имеет дефекты, связанные с качеством механической обработки, а также с коррозией вследствие воздействия окружающей среды. Поэтому усталостные трещины, как правило, начинаются с поверхности, а плохое качество последней приводит к снижению сопротивления усталости.  [c.671]

Эти значения допускаемых напряжений относятся к случаям работы элементов конструкций на чистое кручение при статическом нагружении. Валы, являющиеся основными объектами, рассчитываемыми на кручение, кроме кручения испытывают также изгиб кроме того, возникающие в них напряжения переменны во времени. Поэтому, рассчитывая вал только на кручение статической нагрузкой без учета изгиба и переменности напряжений, необходимо принять пониженные значения допускаемых напряжений [х]. Практически в зависимости от материала и условий работы для стальных валов принимают [х]-20...40 МПа.  [c.180]

При расчете на прочность элементов конструкций, работающих на изгиб, возможны три следующих вида задач, различающихся формой использования условий прочности (7.41)  [c.265]

Следует учесть, что брусья тонкостенного открытого профи.г1я (типа швеллера) плохо сопротивляются деформации кручения, поэтому при использовании таких брусьев в качестве элементов конструкций, работающих на изгиб, следует принимать конструктивные меры для такой передачи нагрузки, при которой плоскость ее действия проходит через центры изгиба поперечных сечений бруса. В частности, для швеллерной балки это можно осуществить, прикладывая нагрузку к угловому коротышу, приваренному к ее стенке (см. рис. 7.48, а).  [c.284]

Напряжения, переменные во времени, возникают в элементах конструкций под действием нагрузок, переменных по величине или направлению, а также нагрузок, перемещающихся относительно рассматриваемого элемента. Так, например, вагонная ось изгибается под нагрузкой от веса вагона (рис. 15.1, а). В верхней части каждого поперечного сечения оси возникают нормальные напряжения растяжения (см. эпюру изгибающих моментов на рис. 15.1, б). При движении вагона колеса, а также жестко соединенные с ними оси вращаются и каждая точка оси оказывается то в верхней (растянутой), то в нижней (сжатой) половине сечения. Переменные напряжения возникают также в валах различных машин, в элементах фермы моста при движении по нему поезда и т. п.  [c.544]

Трубопроводы должны иметь крепление к жестким элементам конструкций. Места креплений должны располагаться на прямолинейных участках и желательно после каждого изгиба. Крепить трубопроводы друг к другу не рекомендуется.  [c.138]

Рис. 1.8. Схема влияния абсолютных размеров на склонность к хрупкому разрушению t — образец 2 — элемент конструкции к — кручение и — изгиб Рис. 1.8. Схема <a href="/info/542166">влияния абсолютных размеров</a> на склонность к <a href="/info/1701">хрупкому разрушению</a> t — образец 2 — <a href="/info/28902">элемент конструкции</a> к — кручение и — изгиб
Это—весьма вал<ное обстоятельство. В практике наблюдались значительные катастрофы (разрушение больших железнодорожных мостов и других инженерных сооружений) вследствие потери устойчивости одним из элементов конструкции. Разрушения от продольного изгиба особенно опасны, так как происходят обычно внезапно.  [c.322]

В ряде случаев элементы конструкций должны быть рассчитаны не только на прочность, но и на жесткость. Расчет на жесткость элемента конструкции, имеющего форму бруса, заключается в определении наибольших угловых и линейных перемещений его поперечных сечений при заданной нагрузке и сопоставлении их с допускаемыми, зависящими от назначения и условий эксплуатации данного элемента. Например, рассчитывая вал на жесткость при кручении, ограничивают углы поворота поперечных сечений вокруг его продольной оси, а при расчете балки на жесткость при изгибе ограничивают величину прогиба. Иными словами, -условие жесткости можно выразить неравенством 8 [б], где 8 — перемещение рассматриваемого сечения, возникающее под заданной нагрузкой, а [8] — величина допускаемых перемещений, назначаемая конструктором.  [c.190]


Растягивающие и сжимающие силы, воположные стороны элемента относительно его нейтральной оси, создают изгибающий момент вызывающий изгиб элемента конструкции до кривизны радиусом. R. Жесткость при изгибе обычно характеризуют тем изгибающим моментом М, который необходимо приложить к элементу конструкции, чтобы изменить кривизну его поверхности (1/J ) па единицу.  [c.183]

В настоящее время метод начальных параметов является общепризнанным и широко применяется при решении различных задач, связанных с изгибом элементов конструкций,  [c.171]

Модуль изгиба конструкции, определяемый экспериментально или вычисляемый по модулям изгиба элементов конструкции, может зависеть от вида ремневой конструкции (от числа и порядка чередования слоев ткани и резины от степени упрессовки пластины при вулканизации ) и от температуры и радиуса кривизны при изгибе. При 20 °С для пластин в 4—8 тканевых слоя без резиновых прослоек с упрессовкой 0,35—0,43, по данным автора и Шляхман [29], при консольном изгибе зг = 5,0-10 Па для таких же пластин с резиновыми прослойками Ешт = 3,4-10 Па. Повышение температуры снижает значения этих величин .  [c.83]

В сборнике представлены задачи на все основные разделы курса сопротивления материалов растялсение-сжатие, аюж ное напряженное состояние и теории прочности, сдвиг и смятие, кручение, изгиб, слож ное сопротивление, кривые стержни, устойчивость элементов конструкций, методы расчета по допускаемым нагрузкам и по предельным состояниям, динамическое и длительное действие нагрузок. Общее количество задач около 900. Некоторые задачи снабжены решениями или указаниями.  [c.38]

На устойчивость необходимо рассчитывать такие элементы конструкций, характер деформации которых претерпевает резкое качественное изменение при достижении нагрузкой некоторого определенного значения, называемого критическим. Примером может служить сравнительно гибкий сжатый стержень — при нагрузке, меньщей критической, он работает на сжатие, а при ее превышении — на сжатие и изгиб. Расчет должен обеспечить устойчивость первоначальной (прямолинейной) формы оси стержня (подробнее см. гл. X).  [c.6]

Однако существенно больший интерес представляют такие задачи, для решения которых элементарные гипотезы не могут привести к цели. Типичный пример — задача о кручении призматического стержня. Если принять для кручения такую же гипотезу плоских сечений, которая была принята для изгиба, окажется, что верный результат получится только для того случая, когда сечение представляет собою круг или круговое кольцо для других форм сечения эта гипотеза приведет к очень грубой ошибке. Точно так же никакие элементарные нредно-ложения не позволяют найти напряжения в толстостенной трубе, подверженной действию внутреннего давления. Можно привести много примеров других элементов конструкций, для которых напряжения и деформации нельзя определить с помощью элементарных приемов, а нужно использовать уравнения теории упругости.  [c.266]

Нгкоторые материалы (бетон, кирпичная кладка) могут воспринимать лишь весьма незначительные растягивающие напряжения, а другие (например, грунт) не могут вовсе сопротивляться растяжению. Такие материалы используются для изготовления лишь элементов конструкций, в которых не возникают растягивающие напряжения. Поэтому они не применяются для изготовления элементов конструкций, испытывающих изгиб, кручение, центральное и внецентренное растяжение.  [c.372]

Достижение предела усталости для материала оказывается возможным только в ограниченной области циклического нагружения. При возрастании числа циклов нагрулсения даже для сталей, для которых не наблюдались разрушения на базе 10 -10 циклов, дальнейшее нагружение сопровождается появлением разрушений [99]. Исследования на круглых образцах стали SUJ2, содержащей С — 1,01 % и Сг — 1,45 %, при частоте изгиба с вращением 50 Гц влияния длительного нагружения на усталостную прочность показали следующее (рис. 1.17). Постепенное снижение уровня напряжения позволяет достичь второго предела усталости. Разрушения материала между двумя пределами усталости связаны с возникновением усталостной трещины под поверхностью элемента конструкции. Поэтому основная долговечность детали с трещиной определяется периодом ее зарождения и распространения до выхода на поверхность. В рассмотренных результатах эксперимента соотношение между первым и вторым пределом усталости составило 0,552.  [c.55]

Исследования высокопрочной стали ЗОХГСА, используемой для изготовления элементов конструкций стоек шасси ВС, было выполнено с целью оценки влияния геометрии концентратора на соотношение между длительностью периодов зарождения и роста трещины. Испытанию на трехточечный изгиб (испытания выполнены Г. М. Трофимовым) подвергали образцы прямоугольного сечения 10x20 мм с надрезом глубиной 2 мм при трех уровнях максимального напряжения цикла 900, 1200 и 1500 МПа с асимметрией цикла нагружения 0,33,  [c.62]


Смотреть страницы где упоминается термин Изгиб элементов конструкций : [c.481]    [c.202]    [c.182]    [c.16]    [c.5]    [c.15]    [c.179]    [c.204]   
Смотреть главы в:

Прикладная механика  -> Изгиб элементов конструкций



ПОИСК



Изгибаемые элементы

ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ В ЭЛЕМЕНТАХ КОНСТРУКЦИЙ Изгиб стержней

Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте