Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модуль при изгибе

Динамический модуль волокон может определяться по резонансной частоте колебаний. Волокно закрепляется одним концом в вибраторе, а второй конец выводится на датчик, регистрирующий колебания. Резонанс фиксируется по максимальной амплитуде колебаний образца. (Часто этот метод называют методом колышущегося тростника ). Метод определения сдвигового модуля основан на измерении периода кручения торсионного маятника. Модуль при изгибе также определяется с использованием двух маятников, причем волокно отклоняют в двух противоположных направлениях [9].  [c.452]


Компоненты смеси Соотношение компонентов Предел текучести прн сжатии кг с м2 Предел прочности прп растяжении ке/см2 Модуль при изгибе кг/смЗ Предел прочности при изгибе ке/см  [c.142]

Модуль упругости при изгибе в Мн м- 200-2,50 —  [c.421]

Предел прочности прорезиненных ремней без прослоек равен 44 МПа. с прослойками — 37 МПа. Модуль упругости при растяжении р=200 МПа, при изгибе =140 МПа. Плотность ремней р= 1,25-10 ...1,5-10 кг/м . Они допускают кратковременную перегрузку на 30 %, но пробуксовывают при резких колебаниях нагрузки. Под действием паров нефтепродуктов они расслаиваются, однако ремни с двусторонней резиновой обкладкой пригодны для ра-  [c.38]

Предел прочности синтетических ремней 120...150 МПа, модуль упругости при растяжении р=10 МПа, при изгибе и=0,5-10 МПа. Плотность ремня р = 0,6-10 ..],2-10 кг/м .  [c.39]

Значения величин bw, гп, округляются до стандартных размеров, причем модуль предварительно следует проверить на выносливость при изгибе.  [c.170]

Модуль упругости при изгибе, Мн/м 150—250 500—800 800-1200  [c.353]

При выполнении рабочих чертежей пружин необходимые технические условия наносятся под изображением пружины. При этом буквенные обозначения размеров заменяются числовыми величинами (черт. 335). На чертеже пружины основные технические требования рекомендуется приводить в последовательности, указанной на черт. 335. На чертеже О — модуль сдвига г — максимальное касательное напряжение при кручении (эти величины на чертеже пружины стандартизированной конструкции допускается не указывать) Е — модуль упругости а — максимальное напряжение при изгибе  [c.153]

Изложенные ранее расчеты на прочность и жесткость при изгибе, основанные на гипотезе плоских сечений и законе Гука с одинаковым модулем упругости на растяжение и сжатие, не исчерпывают всех случаев, с которыми приходится встречаться конструкторам.  [c.325]

Рассмотрим еще определение нормальных напряжений при изгибе в случае, когда материал следует закону Гука, но модули  [c.328]

Если пружина подвергается контролю только по внутреннему диаметру, то на чертеже проставляют диаметр стержня Del если только по наружному диаметру, то на чертеже проставляют диаметр гильзы D . Если на чертеже показывают предельные отклонения диаметра пружины, то значения и в технических требованиях не помещают. Твердость указывают в тех случаях, когда пружина после навивки подвергается термообработке. В основных технических требованиях приводят модуль сдвига G, максимальное напряжение при кручении Тз и при изгибе сГд, модуль упругости Е. В разделе Размеры и параметры для справок указывают значения силы Р , момента М , деформации пружины осевой F3 и угловой Фз, угла между зацепами пружины з, частоты вращения барабана спиральной пружины ()з, высоты пружины под нагрузкой Яд. Параметры и размеры записывают в сле ующей последовательности  [c.241]


После предварительного определения модуля т и других размерных параметров передачи их согласуют со стандартными, уточняют значения коэффициентов и проводят проверочный расчет на выносливость при изгибе по формуле (19.11) и контактную выносливость по формуле (19.2).  [c.210]

Здесь — приведенный модуль упругости, МПа р —приведенный радиус кривизны для конических колес, мм [з/,]—допускаемое контактное напряжение, МПа для стальных колес всухую [з//] = (12. .. 15) НВ для стальных колес в масле [з//] == = (25. .. 30) НВ для чугунных колес [зя] = 1,5зв.1,, где Зв.н — предел прочности при изгибе. Коэффициент полезного действия фрикционных передач г = 0,9. .. 0,95. Сведения по расчету фрикционных передач на выносливость даны в литературе [15].  [c.258]

Произведение Е , где модуль Юнга Е характеризует жесткость материала, а момент инерции 1 является геометрической характеристикой жесткости стержня при изгибе.  [c.63]

По торцовому модулю определяют диаметр делительной окружности зубчатого колеса по нормальному модулю производят расчет на прочность при изгибе и подбирают зуборезный инструмент.  [c.360]

По окружному модулю определяют делительный диаметр зубчатого колеса по нормальному модулю производят расчет на прочность при изгибе и подбирают зуборезный инструмент. При этом, естественно, стандартное значение должен иметь нормальный модуль.  [c.383]

Основным видом проектного расчета закрытых конических передач с низкой и средней твердостью зубьев является расчет на контактную усталость активных поверхностей зубьев, а расчет на усталость зубьев при изгибе применяется как проверочный. Исключением являются передачи с высокой твердостью активных поверхностей зубьев (>50 HR , их нагрузочная способность лимитируется изгибной прочностью) параметры таких передач определяют из расчета зубьев на изгиб, причем основным расчетным параметром является модуль.  [c.147]

Вполне посильны для учащихся следующие темы докладов кручение брусьев тонкостенного замкнутого профиля расчет на растяжение (сжатие) статически неопределимых систем по методу предельного равновесия расчет на кручение брусьев круглого поперечного сечения по методу предельного равновесия расчет на изгиб статически определимых балок по методу предельного равновесия изгиб балок, составленных из материалов с разными модулями упругости изгиб биметаллических элементов при изменении температуры построение эпюр для статически определимых плоских рам.  [c.42]

Расчеты на прочность с учетом пластических деформаций будут рассмотрены в гл. 19. Здесь ограничимся лишь определением нормальных напряжений при изгибе балки прямоугольного поперечного сечения, материал которой не следует закону Гука на протяжении всего процесса нагружения, причем зависимости между напряжениями и деформациями различны при растяжении и сжатии. Рассмотрим также случай изгиба при различных модулях упругости для растяжения и сжатия. Опыты показывают, что и в указанных случаях гипотеза плоских сечений справедлива.  [c.346]

Рассмотрим еще определение нормальных напряжений при изгибе в случае, когда материал следует закону Гука, но модули упругости при растяжении и сжатии различны. Пусть р — модуль  [c.349]

Разница объясняется тем, что при изгибе балки происходит свободная поперечная деформация, сокращение поперечного размера в растянутой области и увеличение его в сжатой области. В широкой пластине такая деформация контура сечения ее плоскостью Z, Xz невозможна, стеснение поперечной деформации эквивалентно увеличению модуля упругости, величина Е заменяется на величину E/ l — v ). При v = 0,3 аффект стеснения поперечной деформации увеличивает жесткость на 9,9%.  [c.399]


Формула (7.17) показывает, что при прямом чистом изгибе кривизна изогнутой оси бруса прямо пропорциональна изгибающему моменту и обратно пропорциональна произведению модуля упругости Е на момент инерции J . Произведение EJ будем называть жесткостью сечения при изгибе] она выражается в Н-м , кН-м и т. д.  [c.247]

Теперь найдем приведенные модули упругости при изгибе Е и .2 . Для первого образца при изгибе его моментом М имеем  [c.363]

Особенности расчета на прочность. Для расчетов на прочность используют те же формулы, что и для расчетов прямозубых цилиндрических передач. Обычно на прочность при изгибе рассчитывают только зубья внешней передачи (сателлит — наружное колесо 5, см. рис. 20.37, й), так как модули зубьев одинаковы и внутреннее зацепление прочнее. При расчете колес с внутренними зубьями коэффициент формы зуба вычисляют по формуле  [c.366]

Исследования показывают, что диапазон отношений llh, при котором расчетные значения модуля упругости и максимальные разрушающие напряжения остаются постоянными, различен для разных типов материалов. Диапазон отношений можно установить на основе анализа распределения напряжений при изгибе балок.  [c.38]

Зависимость модулей упругости (ГПа) при изгибе стеклопластиков, образованных системой двух нитей, от отношения пролет высота образца  [c.109]

Волокно Прочность на растяжение, 103. н/мм2 Модуль при растяжении, 103-H/MM2 Изгибная прочность, 103.Н/ММ2 Модуль при изгибе, 103. н/мм2 Межслой- ная сдвиговая прочность, Н/ММ2  [c.365]

Морозостойкий полипропилен (МПП) несколько уступает немодифици-рованному полипропилену в жесткости, но превосходит его по модулю при изгибе, а главное — по морозойстойкости, которая у МПП составляет — (40—50) °С. Это весьма перспективный материал для автомобильной промышленности.  [c.135]

Для образцов поликарбоната, не подвергавшихся специа.нь-ной термообработке, характерны следующие показатели плотность 1,17—1,22 Л1г/ж влагоемкость 0,16% удельная ударная вязкость (18 л-20) -10 (Зж/лГ предел прочности при растяже-нип 89 Мн м при изгибе 80,0—100,0 Мн1м , при сжатии 80,0— 90,0 Мн/м- модуль упругости при растяжении 2200 Мн1м диэлектрическая проницаемость — 2,6—3,0 удельное объемное электросопротивление 4-10 = ом-см тангенс угла диэлектрических потерь 5-10 . морозостойкость—100°С электрическая прочность 10 кв/.им, максималы ая рабочая температура 135—  [c.410]

При изгибе ремня толщиной 6 на Н1киве диаметра D относительные удлинения наружных волокон по геометрическим условиям равны Ь/D. Напряжения изгиба в предположении постоянства модули упругости Е.  [c.289]

Согласно эпюрам поперечных сил и изгибающих моментов, по левой грани аЬ элемента abed будут действовать равнодействующие сдвигающих Т и нормальных сил Ni. По правой грани d элемента действуют равнодействующие сдвигающей и нормальной сил Т и N2 (рис. 11.2.2). Сдвигающие силы Т, действующие по левой и правой граням элемента abed, равны, так как на рассматриваемом участке балки между силами Pi и Рг действуют одинаковые по величине поперечные силы. Нормальные силы Ni и N2 не равны, так как по сечению I—I действует изгибающий момент М, а по сечению II—II — момент, равный M-f-dM (рис. 11.2.1, в). Для равновесия элементарного параллелепипеда с размерами h/2 — уо, dx и Ь навстречу большей нормальной силе N2 по грани ad элемента abed будет действовать сдвигающая сила Т, возникающая на этой грани на основании закона парности касательных напряжений. Закон гласит Если в каком-либо сечении действует касательное напряжение, то в сечении перпендикулярном будет действовать такое же по модулю напряжение, но обратного знака . Этот закон хорошо проявляется при изгибе деревянных балок, которые скалываются вдоль волокон, так как вдоль волокон сопротивление сдвигу у дерева значительно меньше, чем поперек волокон.  [c.178]

Известно, что вес мотора равен 109 н, вес балки—150 н, длина балки / = = 1,7 м, момент инерции ее поперечного сечения У = 20,9 см, модуль упругости = 2,1 10 н1см. Определить пренебрегая массами стерженьков, вес грузов Яг и коэффициент жесткости Сг при изгибе каждого из стержней, если известно, что при помощи этого виброгасителя колебания мотора и балки погашаются, а амплитуды вынужденных колебаний гру.зов не превышают 0,27 см.  [c.133]

К — коэффициент жесткости пружины, — коэффициент жесткости эквивалентной пружины, Яв — коэффициент крутильной жесткости вала, т — масса груза, J — момент инерции диска относительно оси вращения, — момент инерции эквивалентного диска относительно оси вращения, д — ускорение свободного падения, — статический прогиб упругого звена под действием силы веса, Е — модуль упругости первого рода упругого звена, О — модуль упругости второго рода упругого звена, 2 — жесткость балки при изгибе, — площадь поперечного сечения стержня, ддцна стержня.  [c.102]


Смотреть страницы где упоминается термин Модуль при изгибе : [c.296]    [c.257]    [c.28]    [c.6]    [c.157]    [c.173]    [c.208]    [c.307]    [c.202]    [c.412]    [c.157]    [c.276]    [c.200]    [c.345]    [c.222]    [c.173]   
Промышленные полимерные композиционные материалы (1980) -- [ c.184 , c.188 , c.193 , c.204 , c.205 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте