Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ламинарный режим движения жидкости в трубах

ЛАМИНАРНЫЙ РЕЖИМ ДВИЖЕНИЯ ЖИДКОСТИ В ТРУБАХ  [c.137]

Ламинарный режим. На перенос теплоты при вынужденном ламинарном движении жидкости в трубе влияет свободная конвекция. Наиболее сильное влияние свободная конвекция оказывает при следующих условиях вектор скорости вынужденного движения жидкости в вертикально расположенной трубе направлен вниз жидкость нагревается, при этом у внутренних повер№-  [c.317]


Основываясь на некоторых теоретических соображениях, а также на результатах опытов, Рейнольдс установил общие условия, при которых возможны существование ламинарного и турбулентного режимов движения жидкости и переход от одного режима к другому. Оказалось, что состояние (режим) потока жидкости в трубе  [c.152]

В трубопроводах систем отопления, водоснабжения, вентиляции, газоснабжения и др. движение, как правило, является турбулентным, так как движущаяся среда (вода, воздух, газ, пар) имеет малую вязкость. Ламинарный режим возможен лишь в трубах очень малого диаметра. Более вязкие жидкости, например масла, могут двигаться ламинарно даже в трубах большого диаметра.  [c.154]

Скорость Dk, входящая в соотношения (3-126 ) и (3-126"), при которой турбулентный режим (при уменьшении скоростей в трубе ) переходит в ламинарный режим движения жидкости, называется критической скоростью.  [c.125]

В пограничном слое, как и при течении в трубе, режимы течения жидкости могут быть как ламинарными, так и турбулентными. Режим течения в пограничном слое определяет и характер силы взаимодействия тела с потоком. Так же, как и при движении жидкости в трубах, имеются характерные числа Рейнольдса, при которых в пограничном слое ламинарное течение переходит в турбулентное. Само явление перехода имеет много общего с явлением перехода ламинарного движения в турбулентное в трубах. При турбулентном пограничном слое на об-  [c.298]

По числовому значению критерия Не судят о режиме движения жидкости в трубах круглого сечения при Не < 2320 —движение жидкости ламинарное Ке > 10 — движение жидкости развитое турбулентное 2320 < Ке< < 10 — режим движения переходный, т. е. по своему характеру неустойчивый.  [c.162]

Теплоотдача при движении жидкости в трубах. При ламинарном течении жидкости в трубах возможны два режима движения вязкостный и вязкостно-гравитационный, Наличие в жидкости разности температур (без которой невозможен теплообмен) приводит к возникновению подъемной силы, т, е, к существованию наряду с вынужденной также свободной конвекции. Ламинарный режим вынужденной конвекции, при котором влиянием, свободной конвекции можно пренебречь, называется вязкостным. Вязкостный режим существует при Gr Рг < 8 105 и средний коэффициент теплоотдачи при этом режиме определяется из уравнения подобия  [c.164]


Как известно из гидравлики, режим движения жидкости бывает ламинарный, если частицы ее движутся параллельно стенкам, и турбулентный— при вихревом неупорядоченном перемещении частиц. При этом переход ламинарного движения жидкости в трубах в турбулентное определяется величиной критерия Рейнольдса  [c.103]

Движение жидкости, показанное на рис 3-41,6, получающееся при условии (3-126"), называется турбулентным движением. Здесь имеет место перемешивание жидкости. Скорость входящая в соотношения (3-126 ) и (3-126"), при которой турбулентный режим (при уменьшении скоростей в трубе ) переходит в ламинарный режим движения жидкости, называется критической скоростью.  [c.101]

При постепенном возрастании скорости движения жидкости в стеклянной трубе ламинарный режим сохранится до определенного значения средней скорости, которая называется критической— Окр. Дальнейшее увеличение скорости сверх критической приводит к изгибу струйки красителя, ее разрушению и образо-  [c.40]

На практике в большинстве случаев (движение воды в трубах, каналах, реках) приходится иметь дело с турбулентным режимом. Ламинарный режим встречается значительно реже. Он наблюдается, например, при движении в трубах очень вязких жидкостей, что иногда имеет место в нефтепроводах, при движении жидкостей в очень узких (капиллярных) трубках и в порах естественных грунтов (нефти -- в нефтеносных и воды — в водоносных пластах).  [c.110]

Инженерам-механикам приходится производить гидравлические расчеты бензопроводов, нефтепроводов, маслопроводов жидкой смазки, систем охлаждения, водопроводных линий и т. д, В этих трубопроводах возможен как ламинарный (например, при движении вязких жидкостей технических масел, густой нефти и т. д.), так и турбулентный режим движения. Поэтому рассмотрим оба режима движения жидкости по трубам.  [c.137]

Режим движения в трубе развитый турбулентный при Re > > Re p, 2 10 . Режим движения в трубе при Re==2-10 2-10 переходный. Уже при Re > 2000 после внесения возбуждения в поток в нем не может восстановиться ламинарный режим движения. Если режим движения в трубе ламинарный, то при входе жидкости в трубу на ее стенках образуется ламинарный пограничный слой, который по мере удаления от входа утолщается и на некотором расстоянии от него заполняет все сечение трубы.  [c.186]

Если режим движения переходный или турбулентный, то при входе жидкости в трубу на ее стенках образуется, так же как и в первом случае, ламинарный пограничный слой, который на некоторой длине от входа переходит в турбулентный. Последний утолщается по мере удаления от входа до тех пор, пока не заполнит все сечение трубы (рис. 10.1).  [c.186]

Начальный участок трубы. Теплоотдача жидкости в трубе зависит от режима движения. Режим движения в трубе ламинарный при Re S aid/v < Re,,p 1 2000 (ш—средняя скорость жидкости d—внутренний диаметр трубы). Число Re pi называют нижним критическим числом Рейнольдса.  [c.313]

Свойство устойчивости представляет собой характеристику движения жидкости в целом, поэтому для гладких труб это свойство должно определяться числом Рейнольдса R. Опыт хорошо подтверждает этот вывод. Для малых значений чисел Рейнольдса ламинарное движение устойчиво, для больших— неустойчиво. Режим движения определяется числом Рейнольдса. Граница устойчивости ламинарного движения характеризуется] некоторым значением числа Рейнольдса, которое называется критическим. Для круглых цилиндрических труб критическое значение числа Рейнольдса имеет порядок R p= 1000 1300.  [c.44]

Итак, при преобладании сил инерции, которые зависят от скорости (иначе говоря, при больших значениях Re) возникает турбулентный режим движения, а при преобладании сил вязкости (при малых значениях Re) — ламинарный. Однако описанный метод исследования, ясный по своей идее, пока еще не дал количественных решений для течения жидкости в трубах.  [c.141]

Заметим, что когда турбулентные области в трубе разрастаются, растет и сопротивление движению жидкости (в связи с ростом турбулентных касательных напряжений трения), при этом скорость и уменьшается. Как только она делается меньше критической скорости, разросшиеся турбулентные области обращаются в ламинарные (или выносятся за пределы рассматриваемой части потока) после этого в связи с уменьшением потерь напора (обусловленным переходом турбулентного режима в ламинарный на отдельных участках трубы) скорость v увеличивается, причем турбулентные области снова, появляются и т. д. В связи с таким характером движения в переходной зоне, представить это движение на графике какими-либо определенными кривыми нет возможности. Исключение здесь могут составить только случаи, когда ламинарный режим затягивается и имеет место по длине всего трубопровода (см. прямую 2-3) или, когда в связи с особыми условиями движения турбулентный режим имеет место по длине всего трубопровода (см. линию 5 — 6).  [c.162]


Гидродинамические условия развития процесса. При вынужденном движении жидкости внутри трубы различают два режима течения ламинарный и турбулентный. Ламинарный режим наблюдается при малых скоростях движения жидкости. При скоростях потока, больших некоторого значения Шкр, режим течения переходит в турбулентный. Для различных жидкостей и трубопро-  [c.73]

Аналитически задача решается методом последовательных приближений. Он особенно прост и удобен, если в результате анализа исходных данных можно предположить или ламинарный режим движения, или квадратичную зону сопротивления. Ориентировочным признаком первого является высокая вязкость жидкости, второго - малая вязкость жидкости, значительная относительная шероховатость труб,. Исходя из этих предположений, выражают X по формулам (4.3) или (4.7), а затем уравнение (5.]) разрешают относительно v. Для проверки правильности решения определяют Re и сравниваю " его со значениями Re p или 500, в зависимости от выдвинутого предположения. Если предположение подтвердилось, определяют Q, если нет, то выдвигают уточненное предположение, расчет повторяется и т.д.  [c.85]

Переход ламинарного режима движения в турбулентный происходит постепенно, поэтому обычным является переходный режим движения. Режим движения жидкости оказывает большое влияние на гидравлические потери. В связи с этим всегда требуется точное знание условий смены режима течения. Как показывает опыт, переход ламинарного режима в турбулентный зависит от скорости движения, вязкости жидкости, а также от диаметра трубы.  [c.42]

Задача 2. Пусть при той же схеме трубопровода (см. рис. 72) требуется определить расход жидкости по заданному перепаду напоров ДЯ (потери напора можно не учитывать в местных сопротивлениях или их можно выразить через эквивалентную длину). Так как расход жидкости будет зависеть от режима движения жидкости, который заранее не известен, задачу решают методом последовательных приближений. Для этого в формулу (112) подставляют значения коэффициентов т, п и А, взятые из табл. 10. Предполагается, что известны режим движения жидкости и зона сопротивления (для турбулентного режима). Признаком вероятности ламинарного режима служит высокая вязкость жидкости, зоны вполне шероховатых труб (квадратичный закон сопротивления)—малая вязкость жидкости (вода, бензин) и значительная шероховатость стенок трубы.  [c.139]

Вначале при соблюдении равенств (а) и (б) весь поток жидкости движется целиком как твердое тело с одинаковой скоростью но всему поперечному сечению. По мере увеличения разности напоров АЯ возрастает и скорость движения жидкости. В ближайших к стенкам трубы частях потока развивается ламинарный режим, а в центральной части (так называемом центральном ядре) жидкость по-прежнему продолжает двигаться как твердое тело. Такой режим движения, характеризующийся наличием центрального ядра, называется структурным.  [c.249]

Ламинарный режим движения встречается чаще всего при движении по трубам жидкостей с большой вязкостью (нефти, нефтепродуктов и т. п.), а также при движении воды в тонких капиллярных трубках и порах грунта.  [c.97]

На практике чаще наблюдается турбулентный режим течения жидкости, например, при движении воды в трубах из-за ее сравнительно малой вязкости и большой скорости течения. При движении вязких жидкостей (нефти, масла и др.), а также при движении жидкостей с малой вязкостью, но с небольшой скоростью, наблюдается ламинарный режим течения.  [c.30]

Режим движения жидкости в трубе может быть ламинарным, переходным или турбулентным. Если Ке < 2200, то движение в трубе будет ламинарным в области з 1ачений Не/ от 2,2-10 до 10 имеет место переходный режим движения, при Не/ > 10-1 — турбулентный характер движения жидкости [43].  [c.202]

Основываясь на некоторых теоретических соображениях (см. далее гл. XVII), а также на результатах опытов, Рейнольдс установил общие условия, при которых возможны существование ламинарного и турбулентного режима движения жидкости и переход от одного режима к другому. Оказалось, что состояние (режим) потока жидкости в трубе зависит от величины безразмерного числа, которое учитывает основные факторы, определяющие это движение среднюю скорость v, диаметр трубы d, плотность жидкости р и ее абсолютную вязкость ц. Это число (позже ему было присвоено название числа Рейнольдса) имеет вид  [c.149]

Ламинарный режим. На процесс переноса теплоты при вынужденном ламинарном движении жидкости в трубе влияет свободная конвекция. Наиболее сильное влияние свободная конвекция оказывает при следующих условиях вектор скорости вынужденного движения жидкости в вертикально расположенной трубе направлен вниз жидкость нагревается, при этом у внутренних поверхностей стенки может возникнуть свободная конвекция, что приведет к тур-булизации пристенного слоя и, следовательно, к интенсификации теплоотдачи.  [c.190]

Перейдем к рассмотрению теплоотдачи при турбулентном движении жидкости в трубе. Развитый турбулентный режим течения в трубе осуществляется при Re lOOOO. В диапазоне 2300Re1 O в трубе наблюдается переходный режим течения — неустойчивый режим, характеризующийся сменой ламинарного и турбулентного потока. Такое состояние характеризуется так называемым коэффициентом перемежаемости, O io l, представляющим собой относительное время существования турбулентного потока величина 1—со приходится на долю ламинарного потока. Надежные рекомендации по расчету теплоотдачи при переходном режиме пока не разработаны. Поэтому возможны лишь оценки по минимальному и максимальному коэффициентам теплоотдачи для ламинарного и турбулентного режимов соответственно с учетом коэффициента перемежаемости.  [c.386]


Теплоотдача и гидравлическое сопротивление при движении жидкости в трубах. Ламинарный (вязкостный) режим течения жидкости (газа) в трубах наблюдается при значениях Ке = < НСкр и при отсутствии в вынужденном потоке естественной конвекции.  [c.93]

При исследовании движения жидкостей в трубах было установлено, что при значении чисел НЖкр=2300 ламинарный режим течения становится неустойчивым и переходит в турбулентный, характеризующийся неупорядоченным, хаотическим движением частиц. у Л А - В турбулентном течении частицы  [c.224]

Аналитически решить задачу по определению количества теплоты, переданной от стенки к жидкости, методом интегрирования приведенных дифференциальных уравнений практически невозможно из-за сложности этих уравнений. Этот метод применим лишь для отдельных наиболее элементарных задач процесса теплоотдачи и то лишь при целом ряде предпосылок, упрощающих их решение. Например, для решения задачи о теплоотдаче при движении жидкости в трубе [21 эти предпосылки заключаются в том, что жидкость считается несжимаемой, физические параметры ее принимаются постоянными, не зависящими от температуры, движение считается стационарным, а режим движения — ламинарным, сама труба принимается абсолютно гладкой и т. д. Естественно,что эти предпосылки далеки от действительных услови протекания процесса, и поэтому полученные аналитические решения плохо согласуются с опытными данными.  [c.234]

До значений Re = 2300 поток жидкости в трубе остается ламинарным, при больших значениях Re поток переходит в турбулентный. Ламинарный поток является устойчивым только в докрити-ческой области (до Re = 2300). При некоторых специальных мерах предосторожности ламинарное движение можно наблюдать при числах Re, значительно превышающих критическое. Однако такой режим движения является неустойчивым и при малейшем возмущении потока переходит в турбулентный.  [c.403]

Теплоотдача при вынужденном течении жидкости в трубах, помимо других факторов, в значительной мере определяется режимом движения. При Ре<Рекр1 = 2000 режим движения в трубах ламинарный, при Не Рекр2 = 10 — турбулентный, при 2000< Ке< 10 — переходный. Движение и теплоотдача в трубах протекают сложнее по сравнению с движением и теплоотдачей при внешнем омывании тел.  [c.298]

При возникновении движения вязкопластичных жидкостей в трубе касательное напряжение в пристенных слоях достигает предельного напряжения сдвига. При этом вся масса жидкости начинает двигаться, скользя по пристенным слоям как твердое тело. Такой вид течения называется структурным центральная часть потока, движущаяся с сохранением своего строения, называется ядром потока. По мере увеличения скорости толщина пристенного градиентного слоя будет увеличиваться, а диаметр ядра уменьшаться. При этом скорость частиц жидкости в слое меняется от нуля у стенки до скорости ядра. При некоторой скорости градиентный слой займет все сечение трубы и структурный режим перейдет в ламинарный. Во время перехода от структурного движения к ламинарному струйное течение градиентного слоя может нарущаться такой режим называется квазиламинарным.  [c.305]

При ламинарном течении жидкости в трубах свободное движение накладывается на вынужденное, что приводит к изменению теплоотдачи. При ОгРг>8-10 имеет место вязкостно-гравитационный ламинарный режим и средний коэффициент теплоотдачи на внутренней поверхности горизонтальной трубы определяется выражением  [c.397]

Известны два оснЬвных режима течения жидкости ламинарный и турбулентный. Эти жё режимы могут иметь место № при движении жидкости в пучке. Форма течения жидкости в пучке во многом зависит от характера течения в канале перед пучком. Если при данном расходе и температурах теченйе в канале, где установлен пучок, было бы турбулентным при отсутствии пучка, то оно обязательно будет турбулентным и в пучке, так как пучок является прекрасным турбулизатором. Однако если пучок пойещен в канал, в котором до его установки имел бы место ламинарный режим течения, то в этом случае в зависимости от числа Re можно иметь как одну, так и другую формы течения. Чем меньше число Re, тей устойчивее ламинарное течение, чем больше — тем легче перевести егЬ в турбулентное. При низких значениях числа Re течение может остаться ламинарным. При этом межтрубные зазоры как бы образуют отдельные щелевидные каналы переменного сечения (исключение составля ет предельный случай, когда расстояния между трубами очень велики).  [c.227]

Рассмотрим зада< у о вш уишенном установившемся ламинарном движении жидкости в концентричной кольцевой щели. Дли общности примем, что одна из стенок щели, например, внутренняя, движется со скоростью вдоль оси труби. Подобное течение осуществляется в межтрубном пространстве скважины,в зазорах плунжерных глубинньк насосов, в теплообменниках "труба в трубе" и т.п. Исследованиями установлено [Зб], что для узких щелей ламинарный режим течения сохраняется до чисел Рейнольдса  [c.84]

Для любого потока по известным и, й, V можно составить и вычислить число Рейнольдса Ре = и /у и сравнить его с критическим значением Квкр. Если Ре<Кекр, то 1><Ун.кр И режим движения жидкости ламинарный если Не>Ккр, то у>ии.кр и режим движения, как правило, турбулентный. Однако создание специальных условий движения жидкости (плавный вход в трубу, изоляция от динамических воздействий и т. п.) позволяло в лабораторных условиях получать и наблюдать ламинарное движение в трубах при числах Не, доходивших до (40- 50) 10 и более. Но такое ламинарное движение очень неустойчиво, и достаточно воздействия малого возмущения, чтобы произошел переход в турбулентное движение.  [c.113]

Порядок выполнения работы. Опыты по первой части лабораторной работы проводятся на установке, изображенной на рис. 5-3. Сначала кран К приоткрывается для пропуска малого расхода воды. Уровень воды в баке поддерживается постоянным. Расход воды определяется объемным способом Q=Wjt (см. работу 1), а средняя скорость движения воды в трубе v = Qjопределения кинематической вязкости v следует измерить температуру воды Г, затем найти v по формуле Пуазейля или по построенному в соответствии с этой формулой графику. Тогда число Рейнольдса определится как Re = tлабораторной установке ее диаметр 20—50 мм). При малых чис,т1ах Рейнольдса струйка краски движется не смешиваясь с окружающей жидкостью, т. е. режим движения ламинарный. При большем открытии крана К можно, наблюдая за характером движения окрашенной струйки, установить переход от ламинарного режима к турбулентному. При этом следует, вновь найдя среднюю скорость v и кинематическую вязкость V, определить R kp. При дальнейшем увеличении расхода (числа Рейнольдса) будет наблюдаться устойчивый турбулентный режим с заметным перемешиванием краски с водой. При турбулентном режиме движения также вычисляется число Рейнольдса.  [c.351]


Смотреть страницы где упоминается термин Ламинарный режим движения жидкости в трубах : [c.73]    [c.78]    [c.94]    [c.34]    [c.299]   
Смотреть главы в:

Гидравлика и гидравлические машины  -> Ламинарный режим движения жидкости в трубах



ПОИСК



Движение жидкости в трубах

Движение жидкости ламинарное

Движение ламинарное

Жидкости Режим ламинарный

ЛАМИНАРНЫЙ РЕЖИМ ДВИЖЕНИЯ ЖИДКОСТИ 8- 1. Общие характеристики ламинарвого движения жидкости в трубах

Ламинарное движение в трубах

Ламинарное те—иве

Распределение скоростей и потери напора при ламинарном режиме движения жидкости в трубах

Режим движения

Режим движения жидкости

Режим движения жидкости ламинарный

Режим движения ламинарный

Режим ламинарный

Теплоотдача при движении жидкости в трубах и каналах при ламинарном и переходном режимах



© 2025 Mash-xxl.info Реклама на сайте