Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия под напряжением никеля

Кинетика затухания экзоэлектронной эмиссии сплавов Ре—Ni приведена на рис. 32 и 33. Локальное нагружение алмазной пирамидой (пластический укол) или нагрев в напряженном состоянии сплавов Н15, Н25 и Н27 приводят к интенсивному выходу электронов с поверхности (рис. 32, 33 кривые 5—5). Сплавы с высоким содержанием никеля, не склонные к коррозии под напряжением (кривые 1, 2), имеют минимальные значения эмиссии.  [c.104]

Широко используются нержавеющие стали Fe - Сг - Ni без присадок и с присадками титана, меди, ниобия и молибдена. В зависимости от содержания хрома и никеля такие стали бывают аустенитными, аустенитно-мартенситными и аустенитно-фер-ритными. Они обладают высокими механическими свойствами и стойки к коррозии под напряжением.  [c.119]


Коррозия ПОД напряжением возникает при комбинированном воздействии на металл постоянного растягивающего усилия и коррозионной среды н вызывает коррозионное растрескивание. Этому виду коррозии подвергаются высоколегированные хромистые стали и никель в растворах едкого натра. Растягивающие напряжения могут возникать в результате холодной обработки, например при глубокой вытяжке металла, или при сварке в зоне термического влияния на расстоянии нескольких миллиметров от сварного шва.  [c.28]

Содержание никеля в медноникелевых сплавах колеблется от 5 до 30%. Эти сплавы обладают хорошей коррозионной устойчивостью и широко применяются в кораблестроении и энергетической промышленности для изготовления конденсаторов, радиаторов, трубопроводов, опреснительных установок для получения питьевой воды из морской и др. Они нечувствительны к коррозии под напряжением в аммиачных растворах, за исключением сплавов 95—5 и 90—10, и устойчивы к действию разбавленных растворов щелочей.  [c.123]

В основном это самый устойчивый материал после серебра и платины. Окислители и восстановители (соединения серы) повышают скорость коррозии монель-металла, никеля и инконеля. Эти три металла склонны к коррозии под напряжением, особенно во влажном паре при аэрировании.  [c.485]

Наиболее опасной формой коррозии является коррозия под напряжением. Она характеризуется первоначальным локальным разрушением защитной пленки и последующим очень быстрым его распространением под действием прилагаемых растягивающих напряжений вдоль границ зерен или транскристаллитного разрушения по дефектам упаковки или плоскостям скольжения. Склонность к коррозии под напряжением заметно увеличивается с твердостью стали и с увеличением содержания хрома в ферритной составляющей. Аустенитные стали типа 18-8 более чувствительны к такого рода коррозии, но с увеличением содержания никеля они становятся к ней менее склонными и при содержании - 60% Ni не корродируют вообще. Коррозионная среда может стать проводящей, если она содержит водород и кислород, но на практике она обычно является жидким раствором гидроокиси или хлористого натрия. Их высокие концентрации, температура и напряжения способствуют возникновению и быстрому распространению коррозии. Коррозия под напряжением может распространяться вдоль границ зерен или по зерну в зависимости от природы коррозионной среды и интенсивности напряжений, поэтому отдельные трещины могут носить как интер- так и транскристаллитный характер (см. рис. 15.18).  [c.35]


Некоторые сплавы меди проявляют большее сопротивление коррозии по сравнению с чистой медью благодаря коррозионно-стойким легирующим добавкам (никель, олово) или компонентам, облегчающим образование защитных пленок (алюминий). Латуни (сплавы меди с цинком) под действием некоторых коррозионных факторов могут подвергаться обесцинкованию. Кроме того, они проявляют повышенную склонность к коррозии под напряжением.  [c.105]

Если причиной коррозии под напряжением является хлор-ион, может принести пользу применение аустенит-ных сталей с повышенным содержанием никеля. Если причина в накоплении гидроксил-иона, применение сплавов  [c.215]

При увеличении в нержавеющей стали содержания углерода и никеля до определенного предела склонность к коррозионному растрескиванию снижается. Хром при добавке его к сталям с высоким содержанием никеля улучшает стойкость стали против коррозии под напряжением [32].  [c.276]

Холоднокатаные листы и штамповки из меди, никеля, титана и деформируемых сплавов на их основе отжигают для уменьшения остаточных напряжений при температурах не выше точки начала рекристаллизации, чтобы сохранить высокие прочностные характеристики наклепанного металла. Отжиг для уменьшения напряжений широко применяют к латуням, содержащим более 20% 2п, так как они характеризуются сильной склонностью к коррозии под напряжением ( сезонная болезнь ).  [c.118]

Медь вследствие очень низкого предела упругости не чувствительна к коррозии под напряжением в атмосферных условиях (т. е. не подвергается коррозионному растрескиванию). В контакте с медными сплавами, никелем, оловом и свинцом во влажной атмосфере, в пресной воде и слабых соляных растворах коррозия меди практически не наблюдается. Однако в этих условиях следует избегать контакта меди с алюминием, магнием и цинком вследствие их быстрого разрушения.  [c.25]

Нейтральные и щелочные растворы. Материалы и а основе меди стойки к щелочным растворам в довольно разнообразных условиях [8, 9, 119] но в сильных (особенно, горячих) растворах коррозия может быть значительной. Наиболее хорошие результаты в щелочных растворах обычно демонстрируют сплавы медь — никель. Следует избегать применения меди и медных сплавов при наличии аммиака [8, 9, 120], так как в этом случае наряду с общей может происходить и коррозия под напряжением (если деталь испытывает нагрузки).  [c.104]

При температурах свыше 300° С предпочтительнее использовать малоуглеродистый никель (0,02% С). Это позволяет избежать возникновения межкристаллитной коррозии при длительной экспозиции в щелочи. Если применяется материал с более высоким содержанием углерода, то после сваркн изделия, перед экспозицией в щелочи, его следует подвергнуть отжигу, чтобы предотвратить ускорение межкристаллитной коррозии под напряжением.  [c.151]

На фиг. 78 показано, что стали, содержащие алюминий, не подвергаются растрескиванию при условии их термической обработки при 750°, а на фиг. 79 показано, что никель повышает стойкость аустенитных сталей к коррозии под напряжением.  [c.96]

Увеличенное содержание хрома и никеля способствует повышению стойкости стали к точечной коррозии. Аналогичное действие оказывают молибден, кремний и рений, препятствующие зарождению и вызывающие репассивацию питтингов. Углерод, титан и ниобий снижают стойкость хромоникелевой стали к точечной коррозии, такое же действие оказывает марганец при одновременном снижении содержания хрома и никеля. В отличие от хрома никель и марганец способствуют аустенизации стали. Никель, как правило, повышает коррозионную стойкость и уменьшает вероятность коррозии под действием напряжения. Добавка никеля к хромистым сталям позволяет сохранять их аустенитную структуру. Типичный представитель никельсодержащих сталей — сталь 18/8 (18% Сг, 8% Ni), содержащая 0,02— 0,12% углерода. Скорость коррозии этой стали в морской воде равна 0,010—0,012 мм/год.  [c.25]

Межкристаллитная коррозия распространяется по границам кристаллитов (зерен) металла. Этому виду коррозии подвержены некоторые сплавы (хромистые и хромоникелевые стали, сплавы на основе алюминия, никеля), у которых при определенных режимах термообработки, при старении или под напряжением изменяется химический состав на границе зерна по сравнению с составом в объеме зерна. Под действием коррозионной среды одна из структур, расположенная по границе зерна в виде непрерывной цепочки, растворяется при потенциалах активного состояния в этом случае анодная реакция локализуется на границе зерна, а само зерно металла (объем) находится в пассивном состоянии и разрушается мало.  [c.40]


Недостаток аустенитных нержавеющих сталей — их склонность к коррозии под напряжением в морской воде. Однако стойкость их несколько повышается при увеличении содержания никеля. Например, сплав Инколой состава  [c.21]

Стали и чугуны — наиболее широко используемые сплавы на железной основе. Содержание углерода в сталях не превышает 1,7 % в чугунах оно может доходить до 4 %. Таким образом, эти материалы в наибольшей степени подвержены коррозии под напряжением. Нелегированные железоуглеродистые сплавы используются в основном для изготовления строительных конструкций, а также различных аппаратов и емкостей. Для большей коррозионной стойкости эти сплавы легируют хромом, молибденом, кремнием, никелем, алюминием и другиАш элементами.  [c.38]

Химический состав никеля, скорости и типы коррозии, а также изменения механических свойств, вызванные коррозией, приведены в табл. 102—104 те же данные для Ni—Си-сплавоа — в табл. 105—107 для никелевых сплавов — в табл. 108—ПО. Данные о стойкости коррозии под напряжением — в табл. 111.  [c.279]

По данным К-Эделеану [111,92], наиболее агрессивными, с точки зрения коррозионного растрескивания, средами являются хлориды цинка, магния, натрия, калия, аммония и кобальта, а менее агрессивными — хлориды лития и никеля. Общая коррозия имеет место в хлоридах хрома и ртути. Наиболее безопасно в смысле общей коррозии и коррозии под напряжением хлористое олово. Добавление в раствор хлоридов 1% сульфата меди, 1% сульфата хрома, 5% ацетата натрия и 5% двух замещенного фосфата натрия не ускоряет процесса коррозионного растрескивания. Ингибирующие свойства имеют 5-процентный сульфат натрия и 5-процентный карбонат натрия. Слабое ускорение коррозионного растрескивания было отмечено при добавлении к хлоридам 1% бихромата калия. Такой окислитель, как хлористое железо (в количестве 5%), сильно ускоряет коррозионное растрескивание. Аналогичный эффект наблюдается при введении в раствор хлоридов 1% нитрита натрия, который также, как известно, является окислителем. При отсутствии в растворе хлоридов окислителей коррозионное растрескивание протекает крайне медленно или вообще не протекает [111,86]. X. Графен [111,83] указывает, что в растворе хлоридов, не содержащем кислорода, аустенитная нержавеющая сталь коррозионному растрескиванию не подвергается. При введении в раствор хлоридов кислорода сталь растрескивается тем быстрее, чем больше его концентрация в растворе (табл. 111-17).  [c.150]

Первые парогенераторы реактора PWR изготавливали из труб нержавеющей стали типа 18/8 и хотя этот материал работал удовлетворительно на некоторых станциях более трех лет, появление значительной коррозии под напряжением в процессе эксплуатации привело в большинстве случаев к замене их более коррозионно-стойкими материалами. Широкое распространение получили ннконель и монель-металл, которые обладают устойчивостью к коррозии под напряжением, а для некоторых будущих станций предлагается использовать сплав 800. Увеличение содержания никеля от 40% в инкаллое до 60% в инконеле улучшает сопротивляемость коррозии под напряжением и, хотя и в меньшей степени, питтингу.  [c.186]

Если информация о химических свойствах кластеров и изолированных наночастиц весьма обширна (см., например, монографию [23]), то применительно к консолидированным наноматериалам эти сведения весьма ограничены и исчерпываются главным образом информацией о взаимодействии наноструктурных пленок с газами и о коррозионной стойкости электроосажденного нанокристаллического никеля. Коррозионная стойкость последнего оказалась вполне удовлетворительной даже при таких жестких технологических испытаниях, как коррозия под напряжением при температуре 350 °С в 10%-м растворе NaOH в течение 3000 ч (характерно, что в аналогичных условиях традиционные никелевые сплавы оказались неконкурентоспособными [77]). Более того, в силу особенностей структуры наноматериалы могут быть лишены так называемой локализованной коррозии, поскольку в целом средняя локализация вредных примесей на многочисленных границах и тройных стыках может быть гораздо ниже, чем в обычных материалах.  [c.103]

Недостатком аустенитных нержавеющих сталей является их склонность к коррозии под напряжением в морской воде. В какой-то мере этого недостатка можно избежать увеличением содержания никеля. Примером тому служат сплавы 1псо1оу 800, содержащие 32% N1, и 1псо1оу 825 с 42% N1. Эффективны также добавки молибдена (например, молибденсодержащие аустенитные нержавеющие стали 316 и 317). Эти добавки значительно удорожают сталь, а полностью предотвратить коррозию под напряжением тем не менее не удается. Гораздо более действенным способом остается дозирование в морскую воду, использующуюся в системах охлаждения химических предприятий, ингибиторов коррозионного разрушения металла.  [c.28]

Высоколегированные стали. Коррозии под напряжением подвержены аустенитные стали, например хромоникелевые стали 18-8 с добавкой Мо и без нее, стабилизированные и нестабилизированные низко-углеродистые сорта, аустенитные хромомарганцовоникелевые стали и стали с более высоким содержанием никеля (AISI309 и 310). Нержавеющая сталь с дисперсионным твердением более подвержена коррозии, чем аустенитная сталь. Ферритные хромистые стали с 12 17 и 25% хрома менее склонны к коррозии. Аустенитные стали особенно нестойки, если в них почти отсутствуют ферритные составляющие [121]. Коррозия здесь преимущественно вну-трикристаллитная. Она бывает и межкристаллитной — у сталей в сенсибилизированном состоянии или при недостаточной стабилизации.  [c.44]

Введение в высокохромистые (ферритные) стали никеля, азота, хрома способствует расширению области у-фазы. В результате при определенном соотношении содержания хрома и указанных элементов образуется смешанная аустенито-ферритная структура, обладающая рядом преимуществ по сравнению с-ферритной и аустенитной. Это обусловило более широкое применение этих сталей (см. табл. 1). Так, наряду с повышенной общей коррозионной стойкостью, стали почти не склонны к межкристаллитной коррозии и стойки против коррозии под напряжением. Относительное удлинение и ударная вязкость этих сталей, особенно азотосодержащих (Х28АН и др.), заметно выше, чем ферритных. Присутствие азота в стали приводит к измельчению зерна в исходном состоянии и замедлению скорости роста зерен при нагревании. Стали обладают также хорошими литейными свойствами, поэтому их широко применяют для изготовления отливок. Однако эти стали труднее обрабатывать давлением, чем, например, аустенитные.  [c.20]


Дефектные места швов (места с порами и трещинами) следует вырубать и заваривать вновь. В тех случаях, когда конструкция должна иметь гладкую поверхность, после газовой или дуговой сварки шов проковывают или прокатывают. При этом прочность его повышается за счет измельчения структуры. Иногда после проковкп следует отжиг. После такой обработки прочность швов равна прочности основного металла. Прп сварке никеля и его сплавов необходимо обращать внимание на то, чтобы в изделип возникали минимальные сварочные напряжения для предотвращения коррозии под напряжением. Это требование трудно выполнимо при газовой сварке, когда возникает также опасность науглероживания металла шва.  [c.184]

В работе Дж. Лайла [4] приведены свойства двух экспериментальных сплавов (М916 и М917), содержащих большие добавки железа и никеля. Показано, что порошковые сплавы прочнее, несколько менее пластичнее, но не более чувствительны к коррозии под напряжением, чем стандартные сплавы того же состава.  [c.277]

Богатые никелем сплавы системы Аи — Ni склонны к избирательной коррозий (выщелачивание никеля) и к коррозии под напряжением в водном растворе РеСЬ (1 часть насыщенного РеС1з + 9 частей дистиллированной воды). Это явление было обнаружено в работе [102] для сплава с  [c.142]

Ni—Р-осадки можно применять также для улучшения устойчивости деталей в случае коррозии под напряжением. Так, при не слишком высоких (170 МПа) растягивающих усилиях наблюдается существенное повышение стойкости в условиях кипящего раствора Mg Ij, а именно 1900 ч против 6—8 ч для образцов с гальваническим никелем. В определенных средах Ni—Р-покрытия способны противостоять кавитационному воздействию.  [c.382]

В этой же работе показано, что повышение содержания углерода от 0,04 до 0,20 %, а также дополнительный отпуск при 600 °С в течение 1500 ч не оказывают существенного влияния на коррози-ониое растрескивание стали Х16Н15М2Б. Однако дальнейшие исследования [98, 161] подтвердили возможность существенного снижения содержания никеля в аустенитных нержавеющих сталях и сплавах при сохранении их высокой стойкости против коррозионного растрескивания вследствие уменьшения в них азота н фосфора. Следовательно, азот и фосфор оказывают отрицательное влияние на долговечность аустенитных нержавеющих сталей при коррозии под напряжением.  [c.135]

Никель марок Н1 и НП2 обладает высокой коррозионной стойкостью в чистых растворах хлоридов и хлоратов. Однако в горячих растворах их смесей и особенно в жидкой смеси (шестиводного хлорида магния и хлората натрия) он подвергается весьма интенсивной язвенной коррозии. При испытании под напряжением в этих средах никель Н1 и НП2 подвергается коррозионному растрескиванию по границам зерен.  [c.325]

Транскристаллитное коррозионное растрескивание. под напряжением, к которому чувствительны аустенитные сорта, также можно отнести к селективной коррозии. Это явление подробно обсуждается в разделе 8.3, Коррозионные среды, вызывающие подобные разрушения, очень специфичны чаще всего это хлориды. Для начала растрескивания необходимо критическое сочетание уровня напряжения и концентрации хлоридов, а на практике такие разрушения в большинстве случаев происходят в горячем металле. Все аустенитные стали (см, табл, 1,8) чувствительны к растрескиванию примерно в одинаковой степени. Ферритные стали (см, табл. 1,7), судя по всему, не склонны к растрескиванию, но недавно было замечено, что легирование никелем, медью или кобальтом может вызвать чувствительность к растрескиванию и в ферритной структуре, Мартеи-ситные сорта в смягченном состоянии ие поддаются транскристаллитному растрескиванию, однако в упрочненном состоянии такое растрескивание под напряжением может начаться, причем его вероятность, как правило, возрастает при повышении прочности материала. Мнения о том, является ли транскристаллитное растрескивание в этом случае в действительности селективной коррозией, или это в основном лишь из форм хрупкого разрушения, расходятся (хотя для инженера решение этого вопроса не столь существенно). Коррозионные среды, в которых может происходить такое разрушение, не столь специфичны, как для аустенитных сталей. Исчерпывающий обзор межкристаллитной коррозии сплавов Ре— N1—Сг с учетом влияния напряжений дан в работе Коуэна и Тедмана [8а].  [c.33]

Коррозионно-механическое разрушение металла, или так называемая 1<оррозия под напряжением,— это, как правило, местная коррозия, поражающая наиболее механически напряженные участки металла. Если металл испытывает постоянно действующее растягивающее напряжение, то в сочетании с действием коррозионной среды это приводит к коррозионному растрескиванию. Так, подвергается коррозионному растрескиванию в морской воде нержавеющая высокохроыистая сталь и сплавы алюминия, а в растворах едкого натра — малоуглеродистая сталь и никель. Растягивающее усилие в металле может создаваться не только за счет приложения внешней нагрузки, но и в результате возникновения внутренних напряжений, например в сварном шве или в детали, полученной штамповкой.  [c.71]


Смотреть страницы где упоминается термин Коррозия под напряжением никеля : [c.106]    [c.106]    [c.107]    [c.127]    [c.343]    [c.68]    [c.283]    [c.287]    [c.830]    [c.343]    [c.62]    [c.198]    [c.309]    [c.354]    [c.102]    [c.151]    [c.338]    [c.128]   
Морская коррозия (1983) -- [ c.302 ]



ПОИСК



Коррозия под напряжением

Никель

Никель под напряжением



© 2025 Mash-xxl.info Реклама на сайте