Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитный и механический моменты атома

МАГНИТНЫЙ И МЕХАНИЧЕСКИЙ МОМЕНТЫ АТОМА  [c.207]

Магнитный и механический моменты атома  [c.207]

Излагается векторная модель магнитною и механического моментов атома и даются количественные характеристики модели.  [c.214]

S 37. Магнитный и механический моменты атома 215  [c.215]

Теория атома устанавливает, что если магнитный и механический моменты атомов создаются только орбитальным  [c.10]


Пусть некоторый магнетик намагничен. Это означает, что магнитные моменты атомов магнетика направлены преимущественно в направлении намагничивания. Благодаря этому и механические моменты атомов имеют преимущественное направление. Суммируя почленно левые и правые части равенства (39.1) по всем атомам магнетика, получаем  [c.222]

Физическая природа эффектов. Между магнитным моментом и механическим моментом Lj атома существует соотношение  [c.222]

Из курса атомной физики известно, что в результирующий магнитный момент свободного атома вносят вклад а) спиновые магнитные моменты электронов б) орбитальные магнитные моменты, связанные с движением электронов вокруг ядра. Спиновый и орбитальный магнитные моменты Ms и связаны с соответствующими механическими моментами Рд и гиромагнитными отношениями  [c.321]

Взаимодействие магнитных моментов щ и ц приводит к тому, что механические моменты 1 и з электрона не сохраняют свое положение в пространстве, а совершают прецессию вокруг вектора полного момента ] = 1+з. В этих условиях квантовые числа т и ms теряют смысл. Поэтому, если необходимо учитывать магнитное взаимодействие, состояние электрона в атоме следует характеризовать четверкой квантовых чисел п, I, Ш].  [c.57]

Отличие гиромагнитного отношения для спина от гиромагнитного отношения для орбитального движения имеет существенное значение при рассмотрении полного механического и магнитного моментов атома.  [c.210]

Векторная модель атома. Полный механический и магнитный моменты атома слагаются из механических и магнитных моментов и спинов и спиновых магнитных моментов электронов, образующих электронную оболочку атома. Однако поведение вектора полного механического (и магнитного) момента атома зависит от способа и последовательности сложения отдельных слагаемых. Прежде всего рассмотрим общий метод сложения моментов импульса с учетом пространственного квантования.  [c.216]

Векторное сложение орбитального и спинового механического и магнитного моментов атома  [c.218]

На основании этой схемы сложения моментов можно произвести следующий расчет. Электронная оболочка атома создает в месте, где находится ядро, определенное магнитное поле, напряженность которого обозначим через Н(0). Направление поля (в среднем по времени) совпадает с направлением результирующего момента электронной оболочки Ядро, имеющее механический момент и магнитный момент ly, в силу правил пространственного квантования может ориентироваться лишь определенным числом способов относительно направления поля Н(0). Добавочная энергия, соответствующая этим различным ориентациям момента jiy относительно электронной оболочки, равна  [c.522]


Момент количества движения электрона принято представлять в виде векторной суммы его орбитального и спинового механических моментов количества движения. Магнитный момент также выражается в виде суммы векторов орбитального и спинового магнитных моментов. Как показано в 3-2-3, орбитальный и спиновый магнитные моменты атома различаются между собой коэффициентом g. Поэтому в общем случае направления магнитного момента и момента количества движения атомов, составляющих тело, не совпадают. Расчет при этом получается очень сложным, и потому здесь ограничимся случаем, когда направления магнитного момента и момента количества движения совпадают. Для краткости момент количества движения атома будем выражать в виде JU вместо выражения по формуле (3-2-14). При наличии магнитного поля напряженностью Н возможные направления для момента количества движения атома ограничиваются такими, которые соответствуют направлениям компонент магнитного  [c.177]

Вследствие квантования механических моментов Ps и Рь квантованными оказываются и магнитные моменты. Квант магнитного момента равен магнетону Бора-, лв = ей/(2т)=9,27-10 А-м . Полному механическому моменту атома, определяемому как векторная сумма Pj=Pi,4-Ps, соответствует полный магнитный момент атома Mj, проекции которого на направление поля Н определяются выражением MjH = —wijg UB. Здесь т,- — магнитное квантовое число g — фактор расщепления Ланде, называемый также g-фактором. Для чисто спинового магнетизма g = 2, для чисто орбитального =1- У всех атомов и ионов, имеющих полностью заполненные электронные оболочки, результирующие спиновые и орбитальные магнитные моменты равны нулю. Вследствие этого равен нулю и полный магнитный момент. Атомы или ионы, обладающие недостроенньгаи внутренними оболочками (переходные и редкоземельные элементы), а также содержащие нечетное число электронов в валентной оболочке, имеют отличный от нуля резуль-21—221 321  [c.321]

Такое сильное поле не может быть объяснено обычным магнитным взаимодействием электронных магнитных моментов (поле взаимодействия которых на три-че-тыре порядка ниже указанного). Природа молекулярного поля связана с обменными силами, имеющими электростатическое происхождение. Выражение для энергии обменного взаимодействия единицы объема ферромагнетика (если соседние спины составляют лишь малые углы друг с другом) записывается в виде уравнения (1-8) (учитываются только члены, зависящие от угла между спинами ф 5, и 5 — спиновые механические моменты атомов I и /, измеряемые в единицах /г/2я, к — постоянная Планка I — энергетический интеграл, называемый обменным и определенный таким образом, что когда />0, энергия при параллельной ориентации двух спинов меньше, чем энергия при их анти-параллельной ориентации)  [c.15]

Из-за различия гиромагнитных отношений АЛЯ орбитального движения и спина полный магнитный момент атома, вообще говоря, не коллинварен полному механическому моменту.  [c.216]

Так как гиромагнитное отношение для спина в два раза больше, чем гиромагнитное отношение для магнитного момента, то полный магнитный момент атома не лежит на одной линии с полным механическим моментом. В изолированном атоме как изолированной механической системе полный механический момент постоянен. Следовательно, вектор сохраняет свое направление в пространстве, а векторы полного орбитального момента L, и полного спина пре-цессируют вокруг направления полного момента. Благодаря этому векторы полного орбитального и магнитного моментов также прецессиру-ют вокруг направления полного механического момента и вместе с ними прецессионное движение совершает и полный магнитный момент атома Цполн- Полный магнитный момент атома  [c.219]

Опыт Эйнштейна-де Гааза. На тонкой упругой нити (рис. 73) подвешен цилиндрический образец, который может перемагничиваться под влиянием продольного магнитного поля, создаваемого током, текущим по соленоиду, охватывающему образец. Из формулы (39.2) видно, что изменение магнитного момента образца 5ц и изменение механического момента всех атомов образца 5L связаны соотношением  [c.223]


Эффект Барнетта. Эффект Барнетта является магнитомеханическим эффектом, противоположным эффекту Эйнштейна-де Гааза. Пусть образец начал вращаться с некоторой угловой частотой. Каждый из атомов представляет из себя гироскоп, который сохраняет неизменным направление оси своего вращения в пространстве. Следовательно, механические и магнитные моменты атомов остаются неподвижными в пространстве. Но это означает, что благодаря вращению образца как целого имеется прецессионное движение атомов относительно образца. Такое прецессионное движение атомов относительно образца эквивалентно намагничиванию. Следовательно, в результате вращения образец намагничивается. Направление намагничивания совпадает с направлением оси вращения. Намагничивание определяется угловой скоростью вращения. Поскольку угловая скорость прецессионного движения атомов относительно образца равна угловой скорости вращения образца, из формулы (39.14) можно заключить, что вращение образца с угловой  [c.225]

Эксперимент подтвердил качественно и количественно эффект Барнетта. Таким образом, теоретические представления о связи механического и магнитного моментов атомов хорошо подтверждены экспериментально.  [c.225]

В первую очередь сверхтонкая структура спектральных линий обусловливается наличием у ядер магнитного момента связанного с механическим моментом Магнитный характер взаимодействия между ядром и электронной оболочкой атома позволяет перенести на сверхтонкую структуру все рассуждения, которые применялись для объяснения обычной мультиплетной структуры. Вместе с тем, тот факт, что сверхтонкая структура, грубо говоря, в тысячу раз уже обычной мультиплетной структуры, заставляет предположить. что и магнитный момент ядер составляет приблизительно Viooo от магнетона Бора [Хд. Сходство сверхтонкой структуры с мультиплетной позволяет, прежде всего, построить векторную схему, которая дает возможность определять число компонент.- Если до сих пор мы характеризовали состояние атома результирующим моментом то при наличии ядерного  [c.521]

В электронной теории в разное время были созданы три модели атома модель Томсона, модель Нильса Бора и модель Гейзенберга— Шредингера. По модели Томсона электрон с зарядом —е движется внутри равномерно заполненного положительным зарядом шара, радиус которого равен а, а заряд +е. Из вычислений следует, что радиус положительного шара в этой модели примерно равен 10 см. Однако опыты Э. Резерфорда показали, что положительный заряд сосредоточен в объеме, радиус которого 10 —см. По модели атома Н. Бора электроны двилсутся по круговым орбитам, создавая орбитальный магнитный момент и орбитальный механический момент. Отношение магнитного момента к механическому называется гиромагнитным отношением, оно равно —ejUm. Кроме орбитального, электрон обладает собственным механическим и магнитным моментами, для которых гиромагнитное отношение равно —elm и совпадает со значениями, полученными в опытах ио магнетизму С. Барнетта, а также А. Эйнштейна и В. де Хааза. Магнитные свойства железа обусловлены собственным магнитным моментом.  [c.9]

АНАЛИЗ [активационный — метод определения химического состава вещества с помощью регистрации излучения радиоактивных изотопов, образующихся при облучении вещества ядерными частицами люминесцентный — химический анализ вещества по характеру его люминесценции рентгенорадиометрический— анализ химического состава, основанный на регистрации рентгеновского излучения, возникающего при взаимодействии излучения радиоизотопного источника с атомами вещества рентгеноснектральный — метод определения химического состава примесей вещества по характеристическому рентгеновскому спектру его атомов рентгеноструктурный— метод исследования структуры вещества, основанный на изучении дифракции рентгеновского излучения в этом веществе спектральный — физический метод качественного и количественного анализа веществ, основанный на изучении их спектров — испускания, поглощения, комбинационного рассеяния света, люминесценции АНТИФЕРРОМАГНЕТИЗМ— магнитоупорядоченное состояние кристаллического вещества с антипараллельной ориентацией спиновых магнитных моментов соседних атомов в кристаллической решетке АЭРОДИНАМИКА—раздел аэромеханики, изучающий законы движения газообразной среды и ее взаимодействие с движущимися в ней твердыми телами АЭРОМЕХАНИКА— раздел механики, изучающий равновесие и движение газообразных сред и механическое воздействие этих сред на погруженные в них твердые тела  [c.225]

ВЕРОЯТНОСТЬ термодинамическая характеризуется чис-ло 1 способов, которыми может быть реализовано данное состояние системы ВЗАИМОДЕЙСТВИЕ [—воздействие тел или частиц друг на друга, приводящее к изменению их движения ближнего порядка — взаимодействие между соседними частицами, составляющими вещество гравитационное — взаимодействие между любыми телами, выражающееся в их взаимном притяжении с силой, зависящей от масс тел и расстояния между ними дальнего порядка — взаимодействие между далекими частицами, составляющими вещество звеньями полимерной молекулы при случайном сближении их в процессе теплового движения) обменное — специфическое взаимное влияние одинаковых частиц, входящих в состав квантовой системы, связанное со свойствами симметрии волновой функции системы относительно перестановки координат частиц, а также приводящих к согласованному движению частиц и изменению энергии системы пондемоторное токов — механическое взаимодействие электрических токов посредством создаваемых ими магнитных полей снин-орбитальное — взаимодействие частиц, входящих в состав квантовой системы, зависящее от велггчины и взаимной ориентации их орбитального и спинового моментов импульса, а также приводящих к тонкой структуре уровней энергии системы сннн-решеточ-ное — взаимодействие орбитального магнитного момента атома с кристаллическим полем спин-спиновое — взаимодействие частиц, входящих в состав квантовой системы, обусловленное наличием у частиц собственных магнитных моментов, а также приводящих к сверхтонкой структуре уровней энергии системы электромагнитное — взаимодействие частиц, обладающих электрическим зарядом или магнитным моментом, осуществляемое посредством электромагнитного поля]  [c.226]


Для краткого описания основных физических явлений в диэлектриках проследим, как изменяются их свойства при различных внешних воздействиях. Свойства любого вещества можно разделить на четыре условных класса механические, тепловые, электрические и магнитные. К механическим свойствам, отражающим внутренние связи между молекулами и атомами вещества, относятся упругость, прочность, твердость и вязкость. Тепловые свойства, обусловленные внутренней энергией движения молекул, атомов и валентных электронов, характеризуются тепловым расширением, теплоемкостью и теплопроводностью. К электрическим свойствам, обусловленным переносом и смещением электрических зарядов в веществе, относятся электропроводность, поляризация, поглощение энергии (потери) и электрическая прочность. Магнитные свойства, обусловленные упорядочением магнитных моментов электронов в веществе, в большинстве диэлектриков (неферромаг-  [c.17]

У следующего элемента 3Li появляется третий электрон, которому нет места в полностью застроенной первой электронной оболочке (принцип Паули). Поэтому с лития начинается заполнение второй оболочки с главным квантовым числом л = 2, т. е. начинается второй период в таблице Менделеева. Во второй оболочке имеются 4(s—р) квантовых ячеек, содержащих восемь вакантных мест для валентных электронов. В атоме водорода энергии электронов в s- и р-ячейках одной электронной группы одинаковы. В атоме лития имеется двухэлектронный остов, экранирующий заряд ядра до.7 = 1. Вследствие просачивания части электронной плотности 25-состояния внутрь остова ( ныряющая боровская орбита) энергия связи 25-электрона с ядром оказывается меньше энергии 2р-электрр-йа (2s<2p), и электронное строение атома лития будет ls 2s . У 4Ве заполняется 2х -ячейка, а у следующего элемента 5В впервые появляются р-электроны. Далее заполнение р-ячеек, так же как и ячеек следующих d и f электронных подгрупп, идет в соответствии с эмпирическим правилом Хунда, согласно которому конфигурация электронов должна обладать максимальным суммарным спином 5. Это означает преимуществен-ность параллельной ориентации спинов. Возможность параллельной ориентации спинов исчерпывается у седьмого элемента азота, имеющего замкнутую сферически симметричную р-под-группу, что проявляется в некотором повышении первого потенциала ионизации атома азота по сравнению с атомами соседних элементов. Далее с увеличением порядкового номера элемента электроны начинают размещаться в ячейках попарно с антипараллельными спинами. Этот процесс завершается у десятого элемента неона, атомы которого имеют замкнутую валентную оболочку с полностью компенсированными механическими и магнитными моментами и сферически симметричным распределением электронной плотности. Последнее является следствием свойств суммы квадратов сферических функций для заполненных подгрупп. Атомы неона, как и гелия, имеют высокий потенциал ионизации и химически инертны.  [c.13]

Одной пз конкретных реализаций процесса селективного воздействия является лазерное разделение изотопов. Сама задача разделения изотопов уже давно носит важный прикладной характер. В качестве общеизвестного примера можно привести разделение изотопов урана с атомными массами 235 и 238, необходимое для реализации цепной реакции деления атомных ядер. Использование лазерного излучения по схеме селективное возбуждение — ионизация — отделение ионов от нейтральных частиц открыло новые возможности разделения изотопов. Лазерный метод основан не на различии масс ядер изотонов (как во всех других методах — термодиффузионном, электромагнитном, методе центрифуги), а на различии спектров возбужденных электронных состояний, обусловленном различием магнитного момента ядер разных изотопов данного элемента. Механический момент ядра, связанный с его магнитным моментом, складываясь с моментпм электронной оболочки, определяет результирующий момент атома, определяющий снектр связанных электронных состояшпг. Различие в энергиях возбужденных электронных состояний [(именуемое в научной литературе сверхтонкой изотопической  [c.83]

В 1922 г. О. Штерн и В.Герлах, пропуская узкий пучок атомов водорода через неоднородное магнитное ноле, обнаружили, что пучок расщепился на два, отклонившихся в противоположные стороны. Отсюда следовало, что эти атомы обладали магнитным моментом 1, имевшим две проекции на направление магнитного ноля +/х и — 1. Величина этого магнитного момента оказалась равной магнетону Бора л = лв = еК 2теС, где Ше — масса электрона, с — скорость света. В то же время орбитальный магнитный момент атомов нучка, обусловленный движением электронов относительно ядра, должен был быть равен нулю, поскольку эти атомы находились в сферически-симметричном б -состоянии. Откуда же появился наблюдаемый магнитный момент Голландские физики Дж. Уленбек и С.Гаудсмит в 1925 г. высказали гипотезу, что электрон обладает собственным моментом количества движения 8, имеющим две проекции (+8 и —з) и создающим соответствующий магнитный момент. Этот собственный механический момент и был назван снином .  [c.20]


Смотреть страницы где упоминается термин Магнитный и механический моменты атома : [c.207]    [c.220]    [c.11]    [c.222]    [c.25]    [c.219]    [c.117]   
Смотреть главы в:

Атомная физика  -> Магнитный и механический моменты атома



ПОИСК



МАГНИТНЫЙ И МЕХАНИЧЕСКИЙ МОМЕНТЫ АТОМА Орбитальный момент электрона

Мир атома

Момент магнитный

Момент магнитный атома

Момент механический



© 2025 Mash-xxl.info Реклама на сайте