Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллические фосфоры

Хотя, согласно предыдущему, четкое деление между флуоресцирующими и фосфоресцирующими веществами в настоящее время невозможно, тем не менее существуют вещества, которые вполне целесообразно выделить в класс фосфоресцирующих. К ним принадлежат, в частности, так называемые кристаллические фосфоры, дающие нередко очень интенсивное свечение и имеющие благодаря этому практический интерес. Основой таких фосфоров являются неорганические вещества, не флуоресцирующие в чистом виде. Добавление к ним очень небольщих количеств (10 —10" %) некоторых примесей, так называемых активаторов , делает их интенсивно фосфоресцирующими. Такими активаторами в больщинстве случаев служат соединения металлов. Так, например, яркий фосфор, нередко применяющийся для изготовления фосфоресцирующих экранов, представляет собой сернистый цинк, активированный небольшими примесями соединений, содержащих марганец, висмут или медь.  [c.765]


Проблема строения центров свечения и механизма поглощения света активирующей примесью является одной из наиболее фундаментальных и менее всего изученных проблем в физике люминесценции кристаллических фосфоров. В современной теории люминесценции кристаллофосфоров, в основу которой положена энергетическая модель, вопросы о строении, физических свойствах и химическом составе центров свечения вообще не рассматриваются. Различного рода центры связываются в указанной теории с донор-ными либо акцепторными уровнями, а элементарные процессы описываются чисто феноменологически с помощью констант захвата, высвобождения и рекомбинации электрона.  [c.150]

Растворяясь в феррите, фосфор сильно искажает кристаллическую решетку, при этом увеличиваются временное сопротивление и предел текучести, а пластичность и вязкость уменьшаются. Снижение вязкости тем значительнее, чем больше в стали углерода. Фосфор повышает порог хладноломкости стали и уменьшает работу развития трещины. Сталь, содержащая фосфор на верхнем пределе, для промышленных плавок (0,045 %), имеет работу распространения трещины в 2 раза меньшую, чем сталь, содержащая менее 0,005 % Р, Каждая 0,01 % Р повышает порог хладноломкости стали на 20— 25 °С.  [c.130]

Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни.  [c.364]

Рис. 11.10. Предполагаемое положение атома фосфора в кристаллическом (а) и аморфном (б) кремнии Рис. 11.10. Предполагаемое положение атома фосфора в кристаллическом (а) и аморфном (б) кремнии

В настоящее время для легирования аморфного кремния (и германия) кроме фосфора и бора используют также примеси мышьяка. сурьмы, индия, алюминия и т. д. При этом прямым методом было установлено, что координационное число атома мышьяка в аморфном кремнии, так же как и в кристаллическом, равно четырем. Кроме того, для получения слоев -типа в аморфный кремний с низкой плотностью состояний вводят атомы щелочных элементов, которые проявляют донорные свойства, находясь в междоузлиях.  [c.366]

Фосфор. Железные руды, топливо, флюсы содержат какое-то количество фосфора, которое в процессе производства чугуна остается в нем в той или иной степени и затем переходит в сталь. Фосфор хорошо растворяется в феррите и аустените, а при высоком содержании образует фосфид Ре (15,62% Р). Растворяясь в феррите, фосфор искажает кристаллическую решетку и увеличивает пределы прочности и текучести стали, сильно уменьшает пластичность и вязкость каждые 0,0 % Р повышают порог хладноломкости на 20.. 25 с. Фосфор является вредной примесью в сталях.  [c.81]

III группы — алюминия, галлия, индия с элементами V группы — фосфором, мышьяком и сурьмой. Все эти соединения обладают кристаллической структурой цинковой обманки ZnS, подобной структуре алмаза. Несмотря на сходство с германием в области кристаллического строения, имеется существенное отличие в химической связи. Для образования четырех парных связей атома индия с другими атомами не-  [c.193]

Впервые искусственные радиоактивные изотопы ( меченые атомы) были применены во второй половине. ЯО-х годов при проведении экспериментальных физических и химических исследований. Метод меченых атомов теперь широко используется для изучения структуры молекул, прослеживания некоторых физических превращений (явлений самодиффузии при плавлении и застывании кристаллических веществ, деформации и рекристаллизации металлов, разупрочнения сплавов при высоких температурах), выявления внутреннего механизма химических реакций и т. д. Этот же метод успешно применяется в практике биологических и физиологических исследований, внося существенные коррективы во многие ранее сформировавшиеся представления о динамике процессов, протекающих в живых организмах. Несколько позднее он все более широко стал использоваться в прикладных научно-технических исследованиях при изучении процессов доменного и сталеплавильного производств, износа деталей машин, качества красителей в текстильном производстве и пр. Столь же широко проводятся различные агрохимические исследования с применением меченых атомов (определение усвоения растениями долей азота, фосфора и других питательных веществ из почвы и из вносимых в нее удобрений, выяснение действия ядохимикатов). Наконец, по величинам радиоактивного распада элементов горных пород — природных изотопных индикаторов — осуществляются геологические исследования.  [c.189]

К одноэлементным относятся полупроводники с молекулярной (полимерной) кристаллической структурой сера, селен, теллур, фосфор, мышьяк и сурьма (табл, 11).  [c.407]

Фосфор — Кристаллическая структура 3 — 310  [c.323]

Коррозионное поведение аморфных сплавов типа металл-металл коренным образом меняется при добавлении даже небольших количеств металлоидов. На рис. 9.12 показаны поляризационные кривые аморфных сплавов Ti— 50 Си и Т1 — 45 Си — 5 Р, полученные в 1 н. водном растворе HG1 [12]. При введении в аморфный сплав Ti — Си всего лишь Ъ% (ат.) фосфора в 1 н. водном растворе НС1 происходит самопассивация, электрический ток становится ниже тока пассивации кристаллического титана в таком же растворе. Таким образом, металлоиды играют важную роль в улучшении коррозионной стойкости аморфных сплавов. Ниже мы рассмотрим причины этого.  [c.258]

Снижение ударной вязкости связано с перемещением атомов углерода и фосфора в области, прилегающей к границам зерен. В пограничных областях наблюдается повышенное количество дефектов кристаллической решетки дислокаций и вакансий, создающих благоприятные условия для растворения примесей. Скопление углерода и фосфора вблизи границ было обнаружено при помощи присадки радиоактивных изотопов этих элементов.  [c.171]


Если в полупроводник добавляется примесь постороннего вещества или в его кристаллической решетке образуются какие-либо дефекты, то возникающая проводимость называется примесной. Если число валентных электронов у примеси выше, чем у основного полупроводника, то образуются дополнительные электроны, участвующие в переносе заряда, и в веществе возникает электронная примесная проводимость (п-типа). Атомы такой примеси называются атомами-донорами. Примером может служить германий с примесью фосфора, мышьяка или сурьмы.  [c.235]

Фосфор растворяется в феррите, сильно искажает кристаллическую решетку, снижая при этом пластичность и вязкость, но повышая прочность. Вредное влияние фосфора заключается в том, что он сильно повышает температуру перехода стали в хрупкое состояние, т.е. вызывает ее хладноломкость. Вредность фосфора усугубляется тем, что он может распределяться в стали неравномерно. Поэтому содержания фосфора в стали ограничивается величиной 0,045 %.  [c.101]

Фосфор попадает в сталь так же, как и сера. Атомы фосфора, располагаясь в кристаллической решетке железа, сильно искажают ее, повышая твердость. Фосфор значительно снижает пластичность стали, делая ее хрупкой, особенно при температурах ниже нуля. Это явление называют хладноломкостью. Кроме того, фосфор, как и сера, склонны к образованию ликвационных зон, что отрицательно сказывается на свойствах стали. Содержание фосфора в зависимости от качества стали должно находиться в пределах 0,025-0,07 %. Как и сера, фосфор улучшает обрабатываемость стали резанием.  [c.99]

Основной источник фосфора — руды, из которых выплавляется исходный чугун. Фосфор является вредной примесью, способной в количестве до 1,2% растворяться в феррите. Растворяясь в феррите, фосфор уменьшает его пластичность. Фосфор резко отличается от железа по типу кристаллической решетки, диаметру атомов и их строению. Поэтому фосфор располагается вблизи границ зерен и способствует их охрупчиванию, повышая температурный порог хладноломкости.  [c.277]

По сравнению с кристаллическими аналогами АМС сохраняют избыточную энергию, которая выделяется при кристаллизации. По этой причине АМС химически активны коррозионно-стойкими являются лишь сплавы, у которых образуется пассивирующая защитная пленка. Это, в первую очередь, сплавы железа с хромом и достаточным количеством фосфора и углерода. По сравнению с коррозионно-стойкими сталями эти АМС оказываются более стойкими и для придания им коррозионной стойкости требуется меньше хрома 8 - 9 % против 13 % в сталях.  [c.81]

Кристаллическая фаза в стеклокристаллических покрытиях представлена различными модификациями кремнезема, титана, литиевыми алюмосиликатами, мета- и дисиликатом лития, метасиликатом кальция и др. Катализаторами кристаллизации могут служить окислы хрома, титана, фосфора.  [c.15]

С другой стороны, сложная структура порошкообразных цинк-сульфидных и других подобных светосоставов, с которыми выполнено большинство исследований, необходимость введения в эти фосфоры плавней, роль которых до сих пор недостаточно выяснена, создавали большие затруднения в экспериментальном изучении механизма элементарных актов поглощения и излучения в кристаллических фосфорах.  [c.150]

Широкое практическое применение находят неорганические кристаллические люминофоры, называемые кристал-лофосфбрами или, проще, фосфорами (не надо путать с химическим элементом фосфором ). Они используются, например, в светящихся циферблатах часов. Кристаллофос-форы синтезируют, прокаливая специально приготовленные смеси, включающие в себя основное вещество и примеси активаторов, играющих роль центров люминесценции. Все кристаллофосфоры относятся к диэлектрикам или полупроводникам.  [c.184]

Вместе с тем длительность фосфоресценции может быть различной и часто у одного и того же фосфора развивается несколько свечений различной продолжительности. В ряде случаев, одновременно с длительным, наблюдается и кратковременное свечение, которое накладывается на него и вызвано чаще всего непосредственным возбуждением ионов активатора и близко по своим свойствам с молекулярным свечением. Отличие состоит в том, что атомы активатора взаимодействуют с кристаллической рещеткой основного вещества, поэтому поглощаемые и излучаемые ими частоты представляют собой комбинацию частот чисто электронного перехода центра свечения с частотами колебания решетки основного вещества.  [c.182]

Солнечные батареи. Действие солнечной батареи основано на возбуждении электронов валентной зоны кристаллических тел при освещении тела солнечным светом. В солнечных батареях используются полупроводниковые материалы (рис. 8.53). При столкновении фотона с электроном, происходящем в тонком слое полупроводника р-типа, освобожденный электрон диффундирует в глубь кристалла, где находится полупроводник п-типа, а образовавшаяся в р-полупроводнике дырка перемещается в противоположном направлении. Если толщина слоя полупроводника р-тип2 меньше длнны диффузии электронов (равной примерно 10" см), то во внешней цепи возникает электрический ток, значение которого тем больше, чем больше площадь освещаемой поверхности. Наиболее часто в солнечных батареях используют кремний, легированный в микроскопических количествах бором, с тем чтобы обеспечить проводимость для положительно заряженных дырок, и фосфором (для проводимости электронов).  [c.575]

Атомный номер платины 78, атомная масса 195,09, атомный радиус 0,139 нм. Электронное строние [Хе]4/ 5 6э. Электроотрицательность 1,5. Потенциал ионизации 8,96 эВ. Кристаллическая решетка — г.ц.к. с параметром а = 0,320 нм. Плотность 21,5 т/м . /пл = 1772°С, /кип = = 3827 С, При воздействии серы, углерода, фосфора, сурьмы, мышьяка, свинца, олова, платина становится хрупкой. Она не окисляется на воздухе устойчива в кислотах, кроме царской водки, в которой растворяется значительно труднее, чем золото.  [c.168]

Молекулярная электроника позволяет создавать радиосхемы в твердом теле с помощью электроактивных примесей бора, галлия, алюминия, фосфора, сурьмы мышьяка, образуя в кристаллах зоны, выполняющие функции резисторов, конденсаторов, индуктивностей, диодов и транзисторов. Для создания подобных схем необходимо строго дозировать атомы перечисленных элементов и вводить их в точно намеченные места кристаллической решетки. Твердотельные схемы чрезвычайно малы по размерам и вносят новые представления и теоретические предпосылки в расчет, конструирование и технологию производства радиоаппаратуры.  [c.4]


Рентгеноструктурным и элек троиографическим методами анализа установлено что Со—Р покрытия при содержании в них фосфора не более 6 (мае совые доли, %) имеют кристаллическое строение и представляют собой твердый раствор замещения фосфора в гексагональном а кобальте  [c.57]

Приведенные ниже примеры свидетельствуют о том, что взаимодействие оксида лантана с фосфор- и кремнийсодержащими компонентами растворов 1-8, 1-8 при температурах 800, 1200 °С препятствует получению стеклофазы заданного состава и изменяет фазовый состав наполнителя. Например, в композиции Ьа. Оз—раствор 1-8 после обжига при 800 °С в течение 1.5 ч появляется значительное количество мета силиката лантана, о чем свидетельствуют линии /н=2.89, 2.80, 2.00, 1.90 А на рентгенограмме (рис. 1). Обжиг опека при температуре 1200 °С в течение 5 ч приводит к уменьшению интенсивности линий, свидетельствующем об уменьшении в опеке количества кристаллической фазы. Растровые снимки композиции в отраженных электронах (рис. 2, а) подтверждают гетерогенное строение опека в однородном поле матрицы расположены белые кристаллы размером 6x2 до 28x9 мкм, не соответствующие размеру частиц исходного оксида лантана — 0.1—0.13 мкм. На рис. 2, б—3 элементы стеклосвязки — кремний и алюминий — находятся  [c.65]

Эти формы ликвации являются причиной появления различных структур в стали. В стальных отливках возникает дендритная структура образующийся в начале затвердевания кристаллический скелет обеднен фосфором, в то время как остальные участки обогащены им. Строчечная структура в кованой или катаной стали закономерно связана с распределением фосфора. Фосфид лшлеза (FegP) появляется, если содержание фосфора очень велико или охлаждение вызывает сильную ликвацию фосфора. В стали это явление происходит лишь в редких случаях, фосфид железа преимущественно выделяется в составе фосфидной эвтектики. Вследствие низкой диффузионной подвижности фосфора возникшее после затвердевания распределение сохраняется неизменным. Таким образом, травление реактивом, выявляющим распределение фосфора, характеризует первичную структуру материала. Различные авторы указывали, что действие травителей для выявления первичной структуры связано с распределением кислорода в железе [16]. Можно предположить, что в сталях между  [c.49]

Магнитно-мягкими являются ферромагнитные материалы (чистое железо и его сплавы с кремнием, никелем, кобальтом или алюминием, кремнием и алюминием, хромом и алюминием), отличительными чертами которых являются высокая магнитная проницаемость, низкая коэрцитивная сила (Н от десятых долей до 100- 150 А/м), малые потери на вихревые токи при перемагничивании, узкая и высокая петля гистерезиса, сравнительно большое электрическое сопротивление. Такие материалы быстро намагничиваются в магнитном поле, но так же быстро теряют свои магнитные свойства при его снятии. Свойства магнитно-мягких материалов сильно зависят от наличия дефектов, создаваемых загрязнениями, внутренними напряжениями и искажениями кристаллической решетки используемых металлов и сплавов. Примеси серы, фосфора, кремния и марганца, от которых не удается освободить литое железо даже при его вакуумной переплавке, существенно увеличивают потери на гистерезис. Использование высокочистых карбонильных или электролитических порошков железа и особенно его сплавов с никелем или кобальтом позволяет получать магнитные материалы, более точные по составу и с лучшими свойствами. Весьма эффективно производство спеченных магнитов из трудноде-формируемых сплавов например, при прокатке порошков в ленту толщиной до 30 мкм обеспечивается выход годного до 95 %, тогда как в случае получения такой же ленты из литого металла - 40 %.  [c.207]

Обычно считают, что фосфор иреден для кристаллических сплавов, так как о н ускоряет водородное охрупчивание. Это происходит вследствие того, что фосфор тормозит реакцию (9.7), уменьшающую количество водорода, абсорбирующегося на внешней поверх-Бости металла, другими словами, фосфор ускоряет реакцию (9.10). Однако в аморфных сплавах фосфор предотвращает водородное охрупчивание, так как способствует повышению коррозионной стойкости. Тем не менее, известно, что аморфные сплавы Fe—Р—С, не содержащие второго металлического элемента, наиболее подвержены коррозии среди сплавов типа железо — металлоид и при испытаниях на длительную прочность в воздушной атмосфере эти сплавы корродируют за счет наличия влаги в воздухе, что приводит к их разрушению вследствие водородного охрупчивания [37].  [c.279]

Фосфор попадает в сталь из руды, топлива и флюсов, используемых в металлургическом производстве. В большинстве случаев фосфор, находящийся в стали, растворяется в кристаллической решетке феррита и за счет ликвации располагается по границам зерен. Это приводит к снижению пластичности и существенно охрупчивает сталь, повышает температуру перехода в хрупкое состояние, т. е. фосфор придает стали хладноломкость. Из-за этого количество фосфора в стали может находиться в пределах 0,01—0,07%.  [c.79]

Фосфор, присутствуя в твердом растворе в феррите, делает последний хрупким (хладноломким), так как фосфор по кристаллической решетке, диаметру атомов и строению последних резко отличается от железа и вследствие этого очень сильно искажает решетку феррита. Сталь при повышенном содержании фосфора становится хрупкой и твердой, ударная вязкость ее резко снижается. Кроме того, фосфор сильно ликвирует и неравномерно распределяется. В силу сказанного, содержание фосфора в стали должно быть ниже 0,04%. Содержание фосфора в количестве до 0,1 % улучшает обрабатываемость автоматных (малоуглеродистых) сталей, способствуя образованию хрупкой стружки. Однако, если вытеснить фосфор из твердого раствора в феррите, например, присадкой меди, то он образует химическое соединение FejP, которое присутствует в структуре стали в виде мельчайших твердых частичек в вязком феррите, образуя особый эвтектоид. В такой структурной форме фосфор является полезным элементом, повышая механические свойства стали и стойкость ее в отношении сопротивления коррозии.  [c.139]

Развитие межзеренного разрушения в критическом интервале температур зависит от большого числа факторов и, в том числе, от состояния границ зерен. Так, при наличии на них скоагулированных частиц второй фазы (например, карбидов в сталях) вероятность межзеренного разрушения снижается, так как длина участка межзеренного скольжения будет определяться уже не размером зерен, а расстоянием между частицами и, следовательно, концентрация напряжений будет меньше. Если, однако, эти выделения образуются в дисперсной форме или в виде монолитной сетки, то развитие межзеренных трещин облегчается. Оно также существенно облегчается при наличии на границах включений, ослабляющих сцепление зерен, т. е. при несопряженных кристаллических решетках включения и матрицы. В сталях и сплавах на никелевой основе подобные включения образуют такие вредные примеси, как сера и фосфор, газы, а также свинец, сурьма, висмут и др. В связи с этим введение современных металлургических методов повышения чистоты металла является одним из эффективных способов повышения деформационной способности жаропрочных сталей и сплавов.  [c.14]

Химические свойства. Возможность использования в различных отраслях техники аморфных сплавов определяется еще и тем, что, помимо особых магнитных свойств, аморфные сплавы обладают уникальным комплексом химических и механических свойств. Высокие коррозионные свойства аморфных сплавов сделали их перспективными для использования в технике в качестве коррозионно-стойких материалов. Среди аморфных сплавов на основе железа наивысшую стойкость в агрессивных кислых средах имеют сплавы с определенным сочетанием металлов и неметаллов (высокое содержание хрома и фосфора). Однако высоким сопротивлением коррозии обладают только стабильные аморфные сплавы. Наглядным примером являются аморфные быстрозакаленные сплавы железо—металлоид, не содержащие других металлических элементов, кроме железа. В силу химической неустойчивости аморфного состояния они обладают низкой коррозионной стойкостью. Однако при введении хрома (вместо части железа) резко возрастает химическая стабильность аморфного состояния и, как следствие, растет коррозионная стойкость. Отметим, что в первом случае сопротивление коррозии аморфного сплава железо—металлоид ниже, чем у чистого кристаллического железа, а во втором оно превосходит коррозионную стойкость нержавеющих сталей и высокосодержащих никелевых сталей [427].  [c.303]


Проводимость пленок j, -Si H изменяется в широких пределах в зависимости от условий их получения и, соответственно, от относительного содержания и размеров присутствующих в них микрокристаллитов, а также от уровня легирования пленок. Проводимость нелегированных пленок i -Si H с параметром близким к единице, при комнатной температуре, составляет 10 ...10 Oм м . Путем легирования фосфором или бором проводимость может быть увеличена до 1 Ом см . Величина дрейфовой подвижности электронов и дырок в нелегированном i -Si H изменяется в пределах 0,5...3 м B , в зависимости от величины Xq. Температурная зависимость проводимости пленок в области температур, превышающих 250...270 К, носит активационный характер. Энергия активации зависит от уровня легирования и изменяется в пределах 0,1...0,6эВ. При температурах ниже 250 К проводимость с понижением температуры изменяется существенно слабее. Колоннообразная структура пленок является причиной анизотропии их электрических и фотоэлектрических параметров. Оптические свойства пленок j, -Si H, и прежде всего спектральная зависимость коэффициента поглощения, также являются весьма чувствительной функцией Х( и изменяются в пределах, характерных для а-Si И (при Xq . ) и кристаллического кремния Х 1). В отличие от пленок a-Si H, в пленках j, -Si H не наблюдаются светоиндуцированные изменения электрических и фотоэлектрических параметров. Благодаря своим специфическим электрическим и оптическим свойствам микрокристаллический кремний является хорошим дополнением к a-Si H при создании многослойных пленочных структур различного приборного применения. В значительной степени этому способствует и совместимость технологий получения этих материалов.  [c.105]

Резко отрицательное действие на хладостой-кость оказывают вредные примеси фосфор и сера. Растворяясь в феррите, фосфор заметно искажает кристаллическую решетку твердого раствора и повышает температуру перехода в твердое состояние. Охрупчивающее влияние фосфора усиливается при обогащении им межзеренных границ благодаря развитию ликвационных процессов. Обогащение фосфором границ аустенитных зерен может также явиться следствием перераспределения примесей из-за неодновременного протекания процессов превращения неравновесных структур. Обратимая отпускная хрупкость способствует не только абсолютному уменьшению уровня ударной вязкости, но и существенному повышению порога хладноломкости. Легирование молибденом снижает как склонность стали к отпускной хрупкости, так и порог хладноломкости. Повышение содержания фосфора на 0,01 % в литой стали 35Л увеличивает критическую температуру хрупкости на 20 °С.  [c.600]

Высокая стойкость против коррозии обусловлена образованием на поверхности пассивирзто-щих пленок, обладающих высокими защитными свойствами, высокой степенью однородности и быстротой образования. Помимо хрома повышению коррозионной стойкости способствует введение фосфора. В пленке высокохромистых кристаллических сталей всегда присутствуют микро-поры, которые со временем преобразуются в очаги коррозии. На аморфных сплавах, содержащих определенное количество хрома и фосфора, пассивирующая пленка высокой степени однородности может образоваться даже в 1 н. НС1. Образование однородной пассивирующей пленки обеспечивается химической и структурной однородностью аморфной фазы, лишенной кристаллических дефектов, таких как выделения избыточной фазы, сегрегационные образования и границы зерен.  [c.865]

Аморфное состояние метастабильно и если превышается определенная температура, характерная для каждого сплава, то он переходит в устойчивое кристаллическое состояние. В аморфном состоянии у ряда сплавов наблюдается при сохранении пластичности повышенная твердость и упругость заметно возрастают некоторые электрические и магнитные свойства и, самое главное, сплавы легче пассивируются и коррозионная стойкость их повышается. Повышение коррозионной стойкости аморфного состояния сплавов определяется не только облегчением возникновения пассивации, но и более совершенным пассивным состоянием, что обусловлено гомогенной и однородной поверхностью сплава в аморфном состоянии (отсутствие различных фаз, границ зерен, межзеренной ликвации, инородных включений). В настояшее время получены аморфные сплавы на основе самых разнообразных металлических систем. Максимальный эффект повышения коррозионной стойкости при переходе в аморфное состояние наблюдается для металлических систем, склонных к переходу в пассивное состояние. В настоящее время выполнено большое количест во работ, посвященных исследованию ряда сплавов на основе системы Fe—Сг, содержащих значительное количество углерода, фосфора или бора в качестве аморфизаторов. Так, в ранних работах японских авторов [250—252] описаны свойства сплава на основе железа, содержащего 13 % (ат.) Сг (или 14% по массе) 13% (ат.) Р (или 8% по массе) 7% (ат.) С (или 1,7% по массе). Установлено, что сплав имеет повышенную нассивируемость в растворах кислот, не подвергается питтинговой коррозии даже в подкисленных растворах Fe ls. Значительное количество исследований аморфных сплавов на основе Ре—Сг, а также Ti выполнено и в СССР [254—259].  [c.337]


Смотреть страницы где упоминается термин Кристаллические фосфоры : [c.765]    [c.164]    [c.9]    [c.166]    [c.366]    [c.154]    [c.297]    [c.315]    [c.40]    [c.79]    [c.439]   
Смотреть главы в:

Оптика  -> Кристаллические фосфоры



ПОИСК



Кристаллические

Фосфор - Кристаллическая структура зования

Фосфор Кристаллическая структура

Фосфорит

Фосфоры



© 2025 Mash-xxl.info Реклама на сайте