Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрев и плавление металла при сварке

Нагрев и плавление металла при сварке создают внутренние напряжения в металле и его деформацию, вызываемые следующими причинами  [c.189]

НАГРЕВ И ПЛАВЛЕНИЕ МЕТАЛЛА ПРИ СВАРКЕ  [c.455]

При электрической дуговой сварке нагрев и плавление металла осуществляются энергией, выделяемой дуговым разрядом. При электрошлаковой сварке необходимая для сварки теплота получается при прохождении тока через шлаковую ванну, образуемую при расплавлении флюса. Нагрев и плавление металла при электроннолучевой сварке достигаются за счет интенсивной бомбардировки свариваемого металла быстродвижущимися электронами. При лазерной сварке необходимая для плавления металла теплота выделяется световым пучком, являющимся весьма концентрированным источником теплоты.  [c.13]


Наиболее распространена лазерная сварка импульсных излучением в электронной и электротехнической промышленности, где сваривают угловые, нахлесточные и стыковые соединения тонкостенных деталей. Хорошее качество соединений обеспечивается сваркой лазерным лучом тонких деталей (0,05...0,5 мм) с массивными. В этом случае, если свариваемые детали значительно отличаются по толщине, в процессе сварки луч смещают на массивную деталь, чем выравнивают температурное поле и достигают равномерного проплавления обеих деталей. Чтобы снизить разницу в условиях нагрева и плавления таких деталей, толщину массивной детали в месте стыка уменьшают, делая на ней бурт, технологическую отбортовку или выточку (рис. 123). При лазерной сварке нагрев и плавление металла происходят так быстро, что деформация тонкой кромки может не успеть произойти до того, как металл затвердеет. Это позволяет сваривать тонкую деталь с массивной внахлестку. Для этого надо, чтобы при плавлении тонкой кромки и участка массивной детали под ней образовалась общая сварочная ванна. Это можно сделать, производя сварку по кромке отверстия в тонкой детали или по ее периметру.  [c.238]

В последнее время в сварочной практике находят применение оптические квантовые генераторы (ОКГ), так называемые лозе/)ы. При лазерной сварке нагрев и плавление металла осуществляются мощным световым лучом, получаемым от специальных твердых или газовых излучателей. Для управления сформированным излучателем лучом служат специальные оптические системы. Вакуум при сварке лазером не нужен, и сварка может осуществляться на воздухе даже на значительном расстоянии от генератора.  [c.429]

При интенсивной бомбардировке металла или какого-либо другого материала ускоренными электронами в высоком вакууме около 99% их кинетической энергии переходит в теплов /ю, расходуемую на нагрев. Температура в месте бомбардировки достигает 5000—6000° С, что достаточно для плавления металла при сварке и для тепловой обработки материалов (плавления, испарения, резки, сверления и др.).  [c.371]

При электрической сварке плавлением источником нагрева служит электрическая энергия. Электрическая сварка плавлением подразделяется на дуговую] при этом способе нагрев и плавление осуществляются за счет энергии, выделяемой дуговым разрядом электро-шлаковую, при которой нагрев и плавление металла осуществляются за счет термической энергии, выделяемой током, проходящим через расплавленный флюс (шлаковую ванну) электроннолучевую сварку при которой энергия, расходуемая на нагрев и плавление металла, получается за счет интенсивной бомбардировки основного металла в месте соединения быстродвижущимися в вакууме электронами сварку лазером — источником нагрева является световой луч, получаемый в специальном оптическом квантовом генераторе . сварка дуг.овой плазмой — источником нагрева является струя ионизированного газа. При химической сварке плавлением в качестве источника нагрева используется экзотермическая реакция горения газов газовая сварка) и порошкообразной горючей смеси термитная сварка). Приведем классификацию основных методов сварки металлов по физическим признакам  [c.438]


При электроннолучевой сварке энергия, необходимая для расплавления металла, подводится к детали электронным лучом. Благодаря бомбардировке поверхности изделия электронами и переходу их кинетической энергии в тепловую происходит местный нагрев и плавление материала. При перемещении кромок свариваемых деталей под лучом образуется сварной шов. Можно перемещать луч вдоль неподвижных прямолинейных или криволинейных кромок.  [c.460]

Электрошлаковая сварка, разработанная институтом электросварки им. Е. О. Патона, имеет принципиальное отличие от описанных выше способов сварки плавлением. При этой сварке тепловая энергия, расходуемая на нагрев и плавление металлов изделия  [c.213]

Принцип электродуговой сварки заключается в следующем. Свариваемая деталь соединяется с одним из полюсов сварочного агрегата постоянного или переменного тока (рис. 126), второй полюс соединяется с держателем электрода. При соприкосновении электрода с деталью происходят сильный нагрев и плавление металла. Если в это время не отвести электрод, то он приварится к основному металлу. При отводе электрода на 2—3 мм от детали расплавленный конец электрода излучает электроны, которые расщепляют атомы окружающего воздуха на ионы при этом ионизированный воздух обеспечивает получение устойчивой электрической дуги, температура которой достигает 3000—3500°.  [c.201]

При электрической сварке плавлением источником теплоты служит электрический ток. Электрическую сварку плавлением подразделяют на дуговую, при которой нагрев и плавление осуществляют за счет энергии, выделяемой дуговым разрядом электрошлако-вую, при которой нагрев и плавление металла осуществляются за счет термической энергии, выделяемой током, проходящим через расплавленный флюс (шлаковую ванну) электроннолучевую, при которой энергия, расходуемая на нагрев и плавление металла в месте соединения, получается за счет интенсивной бомбардировки быстродвижущимися в вакууме электронами плазменную, при которой источником теплоты является струя ионизированного газа. Особое место занимает сварка лучом оптического квантового генератора (лазера), при которой нагрев и плавление металла осуществляются мощным световым лучом. При хи-  [c.597]

Электрошлаковая сварка, разработанная в Институте электросварки им Е. О. Патона, имеет принципиальное отличие от описанных выше способов сварки плавлением. При этой сварке тепловая энергия, расходуемая на нагрев и плавление металлов изделия и электрода, получается за счет теплоты, выделяемой в объеме расплавленного флюса (шлаковой ванны) при прохождении через него преимущественно переменного тока (рис. 28.12). Шлаковая ванна не только нагревает металл изделия и электрода, но и надежно защищает расплавленный металл от вредного действия воздуха.  [c.273]

Электрическая дуговая сварка. При электрической дуговой сварке, или коротко-дуговой сварке, нагрев и плавление металла осуществляется дуговым разрядом, возникающим между электродами. Энергию, необходимую для образования и поддержания дугового разряда, получают от источников питания постоянного или переменного тока. Широкое практическое применение находит дуга прямого действия (рис. 1-3, а), горящая между свариваемым металлом и специальным стержнем-электродом. Для сварки используется теплота, выделяемая в столбе дуги и на электродах.  [c.14]

Лазерная сварка. В последнее время в сварочной практике находят применение оптические квантовые генераторы, так называемые лазеры. При лазерной сварке нагрев и плавление металла осуществляются мощным световым лучом, получаемым от специальных твердых или газовых излучателей. Для управления сформированного излучателем луча служат специальные опти-  [c.23]

Источники теплоты при сварке. Нагрев и плавление металла происходят за счет выделения теплоты на электрических сопротивлениях при прохождении через них электрического тока. Полное количество теплоты (0ээ), генерируемое между электродами за время сварки ( св), определяется законом Джоуля - Ленца  [c.130]


Это ориентировочное значение силы тока, его корректируют в зависимости от свариваемого материала или особенностей соединения. Например, при сварке высоколегированных сталей для уменьшения перегрева металла силу тока уменьшают на 20...30 %. Минимальный ток должен обеспечивать нагрев и плавление торца электрода, максимальный ток не должен перегревать электрод по всей длине и вызывать осыпание покрытия.  [c.120]

Нагрев свариваемого металла, в особенности до температур, близких к температуре кипения металла, при сварке плавлением увеличивает его способность окисляться. Для уменьшения окисления и изоляции от окружающей атмосферы металла шва расплавляемый при сварке металл (при некоторых видах производства сварных труб) окружается специальными шлаками, получаемыми в результате плавления флюсов.  [c.284]

При сварке основной металл нагревается в зоне плавления до температуры более высокой, чем температура металла, окружающего сварочную ванну и удаленного от нее. Неравномерный нагрев металла, вызванный.сваркой, приводит к появлению сжимающих сил в зоне металла, прилегающей ко шву, и растягивающих сил вдали от сварного шва. В результате происходит коробление сварного соединения. Кроме того, затвердевание и охлаждение металла шва приводят к его усадке и деформации свариваемого изделия. Структурные напряжения связаны с изменением размеров кристаллов и их взаимного расположения и сопровождаются изменением объема тела, вызывающим внутренние напряжения. Внутренние силы, возникающие в металле при сварке, могут быть достаточными, чтобы привести к образованию трещин в швах или рядо.м с ними.  [c.116]

Нагрев и охлаждение металла в околошовных участках отличаются от обычной термообработки металлов н сплавов кратковременностью теплового воздействия и нагревом металла до высоких температур вплоть до температуры плавления. Такая своеобразная термическая обработка при сварке вызывает различные структурные изменения металлов и сплавов, оказывая серьезное влияние на свойства металла в околошовных участках.  [c.24]

Характеристики дуги. Дуга — весьма эффективный источник тепла при сварке. Сварочная дуга с плавящимся металлическим электродом в различных случаях эффективно отдает на нагрев и плавление основного металла 60 —80% энергии, полученной от источника тока. Потери энергии идут на излучение дуги в окружающее пространство, на теплопроводность металла, уносятся вместе с брызгами металла.  [c.78]

Структура сварного соединения в зависимости от исходной структуры металла определяется скоростью его нагрева и степенью деформации при сварке, а также скоростью охлаждения после нее. Для стыковой сварки характерен быстрый и концентрированный нагрев ограниченного объема металла в диапазоне температур от комнатной до сварочной, часто равной температуре плавления.  [c.33]

При сварке сопротивлением детали прижимают с большим усилием (2...5 кгс/мм ). Сварочный ток нагревает детали до температуры 0,8.,.0,9 от температуры плавления. В стыке происходит пластическая деформация, соединение образуется без расплавления металла. Этим способом не всегда удается обеспечить равномерный нагрев деталей большого сечения по всей площади и достаточно полно удалить из стыка деталей окисные пленки. Поэтому стыковую сварку сопротивлением применяют только для соединения деталей малого сечения (до  [c.283]

Титан обладает весьма высокой температурой плавления (1668 °С) и кипения (3260 °С). Коэффициент теплопроводности у Ti в 4 раза меньше, чем у Fe, и в 13 раз меньше, чем у А1, поэтому при сварке Ti происходит весьма концентрированный нагрев при значительном градиенте температур. Необходимо также отметить высокое электрическое сопротивление Ti. В химическом отношении титан весьма активный металл при высоких температурах, особенно в расплавленном состоянии. При комнатной температуре он устойчив к окислению и обладает высоким сопротивлением коррозии во многих агрессивных средах.  [c.272]

При сварке плавлением скорость нагрева в интервале температур A i - Асз и длительность пребывания металла околошовной зоны при температуре выше Асз оказывают существенное влияние на процесс гомогенизации аустенита и рост зерна. Существует два возможных варианта развития процесса. Первый вариант, когда высокая температура нагрева металла околошовной зоны способствует росту зерна, особенно при большой длительности пребывания металла при температуре выше Асз и одновременно увеличивает устойчивость аустенита. Второй вариант, когда быстрый нагрев и малая длительность пребывания металла выше температуры Асз понижают степень гомогенизации и устойчивость аустенита.  [c.285]

Электронно-лучевая сварка. Нагрев металла при этом способе осуществляется потоком лучей быстродвижущих-ся электронов, ускоряемых электрическим полем. Падая на поверхность изделия, электроны отдают свою кинетическую энергию, превращающуюся в тепловую и нагревают металл до температуры 5000-6000 °С, что достаточно для плавления металлов при сварке и для их тепловой обработки (резки, сверления, испарения). Процесс обычно ведется в герметически закрытой камере с высоким вакуумом, необходимым для свободного движения электронов и обеспечения чистоты наплавленного металла.  [c.334]

Сварка — один из наиболее распространенных технологических процессов получения неразъемных соединений. Сварное соединение характеризуется непрерывной структурной связью и монолитностью строения, достигаемыми за счет образования атомномолекулярных связей между элементарными частицами свариваемых деталей. При электрической дуговой сварке покрытым или вольфрамовым электродом нагрев и плавление металла производится дуговым разрядом, возникающим между электродом и свариваемым изделием. Энергию для образования и поддержания дугового разряда получают от источников питания постоянного и переменного тока. Электрод закрепляется в электрододержате-ле, который с источником питания соединяется сварочным проводом. Для получения электрического разряда необходимо наличие электрической цепи. Поэтому источник питания кроме электрододержателя соединен еще со свариваемым изделием. Практически это оформляется в виде сварочного поста, в который входит источник питания, электрические провода, электрододержатель, устройства для присоединения сварочного провода к источнику питания и свариваемому изделию, устройства для соединения между собой отрезков сварочного провода, щиток и инструмент сварщика, сбо-рочно-сварочные приспособления (рис. 3). Сварочный пост может быть стационарным или передвижным. При сварке на строительно-монтажной площадке или при сварке крупногабаритных изделий в цеховых условиях используются передвижные посты.  [c.21]


При производстве труб широкое применение находят различные методы дуговой сварки, при которых нагрев и плавление металла происходят за счет энергии, выделяемой дуговым разрядом. При электронно-лучевой сварке энергия, расходуемая на нагрев и плавление металла, образуется в результате интенсивной бомбар-  [c.284]

Электрош лаковая сварка. При электрошлаковом процессе основная часть энергии, расходуемая на нагрев и плавление металла, обеспечивается за счет теплоты, выделяемой в замкнутом объеме расплавленного шлака — шлаковой ванне при прохождении через нее тока. Шлаковая ванна 1 образуется (наводится) путем расплавления флюса, заполняющего пространство между кромками основного металла 2 и специальными охлаждаемыми водой приспособлениями—ползунами 3, плотно прижатыми к поверхности свариваемых де-  [c.21]

Когда испытания по методу Gleeble только начинались, проводили много опытов, в которых вьшолняли и нагрев, и охлаждение. Конечно, при нагреве полезную информацию извлекали, однако самый большой спад пластичности и прочности происходил в условиях охлаждения от максимальной температуры, близкой к температуре плавления. Чтобы эти явления не пропустить, испытания теперь проводят, как правило, в режиме охлаждения. Этот подход, по-видимому, и полнее соответствует механизму растрескивания при сварке. Представляется, что трещины в подлинной зоне термического влияния возникают в процессе охлаждения, а в зоне смешения растрескивание тем более должно совершаться в процессе охлаждения, ибо в противном случае они были бы залечены при расплавлении металла в этой области.  [c.271]

Тепло, выделяющееся при протекании реакций (82) п (83), по приближенным расчетам [22] составляет около 12% всего тепла, затрачиваемого на нагрев и плавление стержня эле рода, что, по-видимому, и обеспечивает, наряду с вос-ста ювлеиием железа по реакции (82), высокий коэффициент наплавки при сварке этими электродами (10—11 г/а-ч). Незначительная часть марганца ферромарганца непосредственно переходит в металл шва, несколько повышая в нем концентрацию этого элемента.  [c.121]

Нагрев металла при сварке может производиться не только электрическим током но и, например, за счет экзотермических химических реакций, идущих с большим выделением тепла. Примером подобной сварки может служить газовая сварка. Обычная газовая, или газоплавильная, сварка относится к группе сварки плавлением.  [c.9]

Стыковая сварка. При этом виде сварки детали подключаются ко вторичной обмйтке сварочного трансформатора с по-У мощью специальных держателей. Место соединения деталей нагре-вается током до температуры плавления металлов, при сдавливании деталей образуется сварной шов. Для получения высокого качества сварного шва необходим одинаковый нагрев обеих деталей в месте соединения. Площади поперечных сечений деталей Б этом месте должны быть одинаковьши. Сварка встык применяется для соединения трубчатых деталей и стержней.  [c.51]

Выравнивание химического состава наплавленного металла производится перемешиванием жидкого металла и диффузией на границе сплавления это выравнивание про-исходит главным образом за счет диф- фузии и осуществляется в меньшей степени, чем у жидкого металла. Поэтому на границе сплавления концентрируется большее количество элементов, пе- реходящих из основного металла в на- плавленный или наоборот, по сравнению со средними участками шва или наплав- ленного валика. При этом необходимо иметь в виду, что при сварке или на- плавке нагрев и охлаждение металла происходят быстро. Это в значительной степени затрудняет выравнивание химического состава металла шва.  [c.15]

Сварные швы. Наиболее ачабые места в аппаратуре — сварные швы и прилегающие к ним зоны, в которых при сварке возникают термические напряжения. Как известно, в процессе сварки металл нагревается неравномерно. В зоне сварного шва достигается температура плавления металла, а в прилегающих зонах температура металла намного ниже. На рис. 1-1Х схематически показано изменение температуры металла при сварке и указаны температурные интервалы на упрощенной диаграмме состояния железо — углерод. На участке 1—2 происходят плавление металла, на участке 2—3 — частичное оплавление со значительным ростом зерна участок 3—4 соответствует процессу нормализации структуры с измельчением зереи на участке 4—5 происходит частичная перекристаллизация, на участке 5—6—рекристаллизация зерен на участке 6—7 температура снижается с 400 до 200° С — в этом интервале температур наблюдается синеломкость у сталей, склонных к старению. Здесь по границам зерен скапливаются нитриды и карбиды и пластичность стали снижается. Нагрев до температур ниже 200 С ие вызывает изменения структуры и свойств стали. Следует отметить, что рассматриваемая схема является условной она использована для пояснения темперного влияния на структуру металла в процессе сварки.  [c.131]

В связи с опасностями такого рода при стыковой контактной сварке всегда рационально обеспечивать осадку, не выключая сварочного тока. Вокруг всякого дефекта, концентрирующего механические напряжения, электрический ток и его магнитный поток создают также свои собственные концентрации. Если концентрация механического сдвига усиливает разрушение, то электромагнитное поле своей концентрацией может противостоять этим действиям. И концентрация тока, и магнитный поток вызывают значительный и мгновенный нагрев в зоне концентрации. Нагревы могут доводить металл до мгновенного плавления, когда не только залечиваются микротрещины, но и ргезко меняется структурная картина со всеми ее бывшими микродефектами. Влияние электромагнитных полей на трещинообразование при сварке полезно иметь в виду и исследователям прочностных свойств соединений при дуговой сварке. Оказывается совершенно небезразлично, как подводился сварочный ток к сварным образцам, с какой именно стороны и в каком направлении. И сварочный ток, и магнитное поле при сварке могут быть и не быть полезными концентраторами.  [c.155]

При затвердевании расплавленного материала слабые адге знойные связи заменяются прочными химическими связями, соответствующими природе соединяемых материалов и типу их кристаллической решетки. При сварке плавлением вводимая энергия (обычно тепловая) должна обеспечивать расплавление основного и присадочного материалов, оплавление стыка, нагрев кромки и т. д. При этом происходит усиленная диффузия компонентов в расплавленном и твердом материалах, их взаимное растворение. Эти процессы, а также кристаллизация расплавленного металла сварочной ванны (или припоя) обеспечивают объемное строение зоны сварки, что обычно повышает прочность сварного соединения.  [c.13]

Ele trosiag welding — Электрошлаковая сварка. Процесс сварки плавлением, в котором нагрев при сварке производится пропусканием электрического тока через расплавленный проводящий шлак (флюс), содержащийся в шлаковой ванне, образованной охлаждаемыми водой преградами, которые соединяют промежуток между свариваемыми элементами. Нагретый сопротивлением шлак не только расплавляет электроды присадочного металла, поскольку они находятся в слое шлака, но также и обеспечивает защиту для массивной сварной ванны, характерной для этого процесса.  [c.949]


Смотреть страницы где упоминается термин Нагрев и плавление металла при сварке : [c.78]    [c.59]    [c.440]    [c.134]    [c.161]    [c.191]    [c.239]    [c.286]   
Смотреть главы в:

Теория сварочных процессов  -> Нагрев и плавление металла при сварке

Теоретические основы сварки  -> Нагрев и плавление металла при сварке



ПОИСК



Нагрев металла

Плавление

Плавление металлов

Сварка металла

Сварка плавлением

Сыр плавленый



© 2025 Mash-xxl.info Реклама на сайте