Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Джоуля закон

Детального равновесия принцип 322 Джинса число 113, 312 Джоуля закон 19 Диоды кремниевые 251  [c.444]

Ленцу принадлежат многочисленные научные работы и исследования. Из этих работ непосредственно к термодинамике относится установленный им одновременно с Джоулем закон теплового действия тока. Ленц результаты своих экспериментальных исследований,  [c.549]

Ленца — Джоуля закон 2 — 338  [c.435]

Для идеального газа, согласно закону Джоуля, ( У/ЗУ)у = = 0, так что  [c.19]


В 1843 г. англичанин Джоуль, а в 1844 г. русский академик Ленц установили соотношение между электрической энергией и теплотой. Доказали эквивалентность электрической работы и тепла. Этот закон вошел в физику под названием закона Ленца — Джоуля.  [c.53]

Внутренняя энергия идеального газа по закону Джоули зависит только от температуры и не зависит от объема и давления. Это положение требует, чтобы  [c.164]

Место соединения при контактной сварке разогревается проходящим по металлу электрическим током (рис. 63). Количество выделяемой теплоты О, (Дж) определяется законом Джоуля — Ленца где 1 — сва-  [c.106]

Общее количество теплоты Q, выделяемое в электрическом контакте, в соответствии с законом Джоуля—Ленца определяется как  [c.133]

Первое начало термодинамики, окончательно сформулированное Джоулем в середине XIX в., представляет собой закон сохранения энергии. Для замкнутых систем, способных обмениваться энергией с окружающей средой, уравнение первого закона термодинамики имеет вид  [c.252]

Открытие же всеобщего закона сохранения и превращения энергии приписывают обычно Р. Майеру или Джоулю. Но никакое крупнейшее открытие не может принадлежать одному человеку. В частности, открытие этого закона было подготовлено трудами Декарта, Гюйгенса, Лейбница, Ломоносова, Сади Карно и многих других ученых. Постановка этой проблемы и, в частности, изучение перехода тепловой энергии в механическую было вызвано в первой половине XIX в. развитием промышленности и применением паровых машин, практически осуществляющих этот переход.  [c.400]

Первый член в правой части уравнения (15.2) для идеального газа должен быть равен нулю, так как по закону Джоуля внутренняя энергия  [c.48]

Отклонения реального газа от закона Бойля таковы, что член [д pv) dp x в зависимости от условий может быть и положительным и отрицательным, как показано на фиг. 35, где в (/>0 —/ )-диаграмме изображены изотермы, типичные для всех газов (см. [71]). Пунктирная кривая на фиг. 35 изображает геометрическое место точек, в которых [9 (ри)/9р]х = 0 температура, соответствующая изотерме, направленной горизонтально при р = 0 (т. е. для которой при р = 0, [д (pv)/dp]T = 0), называется температурой Бойля в. Для данного вещества. Ясно, что для всех температур, превышающих температуру Бойля Те., выражение — [д (pv)/dp]x всегда отрицательно, что соответствует нагреванию в процессе джоуль-томсоновского расширения. Следовательно, при Т > Тв. конечный результат эффекта Джоуля— Томсона (охлаждение или нагрев) определяется соотношением величин двух правых членов уравнения (15.2) один член приводит к охлаждению вследствие отклонения от закона Джоуля, другой —к нагреву вследствие от-  [c.48]


Термодинамика возникла из потребностей теплотехники . Развитие производительных сил стимулировало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. французским физиком, инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения , устанавливающим основные положения материализма. Закон сохранения и превращения энергии имеет как количественную, так и качественную стороны. Количественная сторона закона сохранения и превращения энергии состоит в утверждении, что энергия системы является однозначной функцией ее состояния и при любых процессах в изолированной системе сохраняется, превращаясь лишь в строго определенном количественном соотношении эквивалентности из  [c.10]

Используя закон Джоуля о независимости внутренней энергии газа от его объема при постоянной температуре  [c.31]

На основании уравнения Клапейрона — Менделеева и закона Джоуля для идеального газа находим  [c.41]

Если в цепи э. д. с. Ленца в ней выделяется в единицу времени количество теплоты Q = Sl, а в единице объема контура (в общем случае и не однородного) в единицу времени выделяется теплота  [c.371]

В 1748 г. М. В. Ломоносов в письме к Эйлеру, высказывая мысль о законе сохранения вещества и распространения его на движение материи, писал Тело, которое своим толчком возбуждает другое тело к движению, столько же теряет от своего движения, сколько сообщает другому . В 1755 г. Французская Академия наук раз и навсегда объявила, что не будет больше принимать каких-либо проектов вечного двигателя. В 1840 г. Г. Г. Гесс сформулировал закон о независимости теплового эффекта химических реакций от промежуточных реакций. В 1842—1850 гг. многие исследователи (Майер, Джоуль и др.) пришли к открытию принципа эквивалентности теплоты и работы.  [c.30]

В случае идеального газа Ср и Су на основании закона Джоуля зависят только от температуры, причем для одноатомных газов у = 5/3 и не зависит от Т, а для двухатомных газов у с увеличением Т уменьшается и при комнатной температуре равна 1,4.  [c.37]

В период 1840—1850 гг. ряд ученых приходит к частичному утверждению закона сохранения и превращения энергии и, наконец, к признанию этого закона трудами Майера, Джоуля, Гельмгольца, русских академиков Г. И. Гесса и Э. X. Ленца.  [c.7]

Это уравнение выражает закон Джоуля.  [c.97]

Если известна теплота диссипации, то выражение для обобщенной силы можно получить, не используя уравнение баланса, а непосредственно через выражение для функции диссипации (8.13). Например, теплота диссипации электрической энергии передается законом Джоуля—Ленца  [c.210]

Идеальные газы, по определению (см. соотношения 1.5 1.5а) подчиняются уравнению Клапейрона (ру = КТ). Идеальные газы подчиняются также и закону Джоуля, согласно которому внутренняя энергия идеальных газов есть функция только температуры  [c.26]

Диоды Кенотроны Пентоды Тетроды Триоды Левина профилографы 251, 252 Лекланше элемент 356 Ленца закон 333 Ленца-Джоуля закон 338 Леонарда система — см. Система генератор-двигатель Лермантова объемомер 14 Линзы 233  [c.542]

Место соединеиня разогревается проходящим по металлу электрическим TOKO i, причем максимальное количество теплоты выделяется в месте сварочного контакта (рис. 5.24). Количество выде-ляемо11 теплоты определяется законом Джоуля — Ленца  [c.211]


Это уравнение определяет температуру 0, намеренную термометром с 1идеальным газом. Вместо калорического уравнения-состояния достаточно использовать закон Джоуля при постоянной температуре энергия идеального газа не зависит от за- нимаемого им объема, т. е.  [c.60]

Закон Джоул я—Л е н ц а. Электрический ток / (А), про-згодя по проводнику с сопротивлением (Ом), в течение времени t (с) выделяет энергию А (Дж)  [c.109]

Закон (43.12) был экспериментально установлен английским ученым Джеймсом Джоулем (1818—1889) и русским ученым Эмилием Христи-ановичем Ленцем (1804— 1865), поэтому носит название закона Джоуля — Ленца.  [c.150]

Калорическое уравнение состояния идеального газа можно установить исходя из опытов Гей-Люссака и Джоуля — Томсона. Согласно этим опытам, при расширении разреженного газа в пустоту без притока теплоты (5Q = 0) его температура не изменяется. Отсюда следует закон Джоуля, энергия идеального газа, находящегося при постоянной температуре, не зависит от занимаемого им объема Действительно, поскольку при таком расширении bQ = 0, 5Ж=0 и, следовательно, по первому началу, dJ7=0, то при dr=0 (согласно опытам Гей-Люссака) из уравнения dU= 8U/8T)ydT+(8U/dV)jdV=0 получаем (8UI8V)t = 0. Поэтому для идеального газа  [c.41]

Таким образом, коэффициент Джоуля—Томсона в критической точке равен величине, обратной угловому коэффициенту кривой давления как функции температуры в этой точке. Величина (8pjdT)y вблизи критической точки почти не изменяется, а (SVIdp)-j- расходится быстрее, чем Су, которая, по последним эксперимет альным данным, меняется по степенному закону Су- Т Т ,Г а= /з.  [c.369]

Исторически термодинамика возникла из потребностей теплотехники. Развитие производительных сил стимулиров.ало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. в первом сочинении по термодинамике французским физиком и инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения .  [c.9]

Из этого уравнения dP/dT)v = R/V. Подставляя найденное выражение пронзводной дР/дТ)у в формулу (3.27 , получаем закон Джоуля (дЕ дУ)т = 0, который, как мы уже показывали, позволяет найти калорическое уравнение состояния газа, если дополнительно известна температурная зависимость его теплоемкости  [c.55]

После Ломоносова обоснованием и развитием закона сохранения и превращения энергии занималиеь руеский академик Гесе (1840 г.), Джоуль (1840 г.), Майер (1842 г.), Гельмгольц (1847 г.).  [c.26]

Открытие первого, второго и третьего начал термодинамики. Основателями первого начала термэдинамиин счигакэтся Майер, Джоуль, Гельмгольц, а само открытие первого начала термодинамики относится к 40-м годам XIX в. Однако еще задолго до этого Ломоносов, исходя из своих изысканий по теории теплоты и горения, сформулировал объединенный закон сохранения материи и движения, из которого вытекал закон сохранения энергии. Важную роль сыграли также терм Jxкмичe киe исследования Гесса и открытый им закон независимости суммарного теплового эффекта химической реакции от пути и последовательности осуществления составляющих реакций. Об этих исследованиях Планк позже писал, что убеждающая справедливость этого положения происходит вне сомнения от идеи, что теплота не мо жет быть получена из ничего.  [c.153]


Смотреть страницы где упоминается термин Джоуля закон : [c.927]    [c.458]    [c.64]    [c.604]    [c.593]    [c.633]    [c.154]    [c.813]    [c.90]    [c.78]    [c.48]    [c.44]    [c.100]   
Температура (1985) -- [ c.19 ]

Физика низких температур (1956) -- [ c.48 ]

Техническая термодинамика и теплопередача (1986) -- [ c.22 ]

Термодинамическая теория сродства (1984) -- [ c.78 ]

Задачи по термодинамике и статистической физике (1974) -- [ c.9 , c.10 , c.16 ]

Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.433 ]



ПОИСК



Джоуль

Закон Авогадро Ленца-Джоуля

Закон Архимеда Джоуля—Ленца

Закон Вина Джоуля

Закон Джоуля — Ленца

Закон Кирхгофа Ленца—Джоуля

Закон Ленца-Джоуля и удельное сопротивление

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ Теплота. Опыт Джоуля. Эквивалентность теплоты и работы

Работа и мощность тока Закон Джоуля — Ленца



© 2025 Mash-xxl.info Реклама на сайте