Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о теориях прочности

ПОНЯТИЕ О ТЕОРИЯХ ПРОЧНОСТИ  [c.195]

Понятие о теориях прочности  [c.117]

ТЕОРИИ ПРОЧНОСТИ и их ПРИМЕНЕНИЕ 65. Понятие о теориях прочности  [c.252]

ПОНЯТИЕ О ТЕОРИЯХ (ГИПОТЕЗАХ) ПРОЧНОСТИ И ИХ ЗНАЧЕНИИ  [c.66]

ПОНЯТИЕ О НОВЫХ ТЕОРИЯХ ПРОЧНОСТИ  [c.190]

Надо заметить, что ранее в программе вопросы напряженного состояния были даны отдельной темой, изучавшейся непосредственно после темы Растяжение и сжатие . Конечно, более тесное объединение вопросов напряженного состояния с гипотезами прочности вполне логично и целесообразно. Во-первых, учащиеся к моменту изучения гипотез прочности уже лучше чувствуют идеи и методы предмета, их уровень развития становится выше, они могут лучше понять и усвоить сравнительно сложный материал о напряженном состоянии. Во-вторых, излагая гипотезы прочности после того, как основы теории напряженного состояния были изучены, неизбежно приходится вновь повторять основные сведения и понятия о напряженном состоянии, что приводит к непроизводительной затрате времени и, несомненно, ухудшает восприятие нового материала о гипотезах прочности. В-третьих, при такой системе изложения получается постепенное наслоение знаний о напряженном состоянии в самом начале учащемуся говорят о том, что напряжение зависит от положения площадки действия, затем его знакомят с напряженным состоянием при растяжении (сжатии), потом он изучает чистый сдвиг, наконец, непосредственно перед гипотезами прочности он получает достаточно полные и систематизированные сведения о напряженном состоянии.  [c.150]


Назначение и физическая сущность гипотез прочности. Выскажем некоторые соображения о терминологии. До сравнительно недавнего времени (а во многих книгах и по сей день) принято наименование теория прочности , недостаточно хорошо отражающее существо вопроса. Наиболее четко сущность понятия отражена в наименовании теория предельных напряженных состояний (гипотезы возникновения текучести и гипотезы прочности) , принятом в монографии [26] и в учебнике [36]. Несмотря на то что это наименование удачно по смыслу, оно неудобно (слишком многословно) и поэтому предложено пользоваться более кратким — гипотезы прочности . Этот термин вошел в программы по технической механике и в учебную литературу для техникумов.  [c.159]

Если можно принять определенные допущения, например допущение о том, что плоское поперечное сечение балки при рассматриваемых нагрузках остается плоским, теория упругости упрощается и переходит в теорию сопротивления материалов. В основе обеих теорий лежит понятие О равновесии сил, характеризуемое стабильностью. Стабильность является главным условием адекватности функционирования изделия. Стабильность рассматривается с позиций нагрузок, которым подвергается изделие, и напряженного состояния, вызываемого этими нагрузками. Она рассматривается по внутреннему и внешнему напряженному состоянию с учетом прочности и контактных деформаций. Нестабильность является следствием внутренних дефектов материала, отклонений размера, формы, расположения, волнистости, шероховатости, изменяющих состояние контактной поверхности. Условие стабильности — соответствие нагружения и напряжений отсутствие такого соответствия может привести к самым тяжелым последствиям. При соблюдении  [c.245]

Феноменологическая оценка разрушения твердого тела на основании критерия прочности в общем случае ничего не говорит о характере тех процессов, которые привели к потере несущей способности, хотя некоторые критерии могут иметь определенную физическую интерпретацию. Использование совокупности критериев может позволить в рамках феноменологического подхода различать механизмы разрушения. Концепция описания критического состояния материала с помощью более чем одного уравнения ярко выражена в теории прочности Я.Б. Фридмана [67]. В работе А.А. Ильюшина [104] введено понятие повреждения частицы материала и на основании мер повреждений записана совокупность критериев прочности, каждый из которых соответствует разрушению определенного типа.  [c.111]


Главное, что будет излагаться в этой книге, по существу, состоит из трех основных частей 1) основные понятия о перемещениях, внутренних напряжениях, деформациях и работе внутренних сил, а также о процессе нагружения малого элемента твердого тела 2) основные механические свойства твердых тел, такие, как упругость и идеальная пластичность, текучесть, ползучесть и релаксация, вязкость и динамическое сопротивление, усталость и разрушение 3) основные кинематические и геометрические гипотезы, упрощающие математическую постановку задач о напряжениях, деформациях, перемещениях и разрушениях твердых тел при различных внешних воздействиях, а также основные уравнения и методы решения задач о деформации и прочности тел. Методы сопротивления материалов отличаются от более строгих методов теории упругости и пластичности в основном введением ряда упрощающих предположений кинематического и геометрического характера и, тем не менее, в большинстве случаев оказываются достаточно точными.  [c.12]

При анализе прочности в случае наличия трещин используют понятие о концентрации напряжений в том виде, в каком оно разработано в теории упругости. Основная конфигурация рассматриваемого образца показана на рис. 2. Этот лист с эллиптическим отверстием, к которому приложена осевая растягивающая нагрузка  [c.428]

Весь цикл научных дисциплин, относящихся к механике деформируемого тела и связанных с разработкой вопросов прочности (жесткости, устойчивости) конструкций, часто называют строительной механикой в широком смысле слова. Строительной механикой (в узком смысле слова) называют статику и динамику сооружений. Границы между отдельными ветвями науки о прочности конструкций определяются как объектами, так и методами исследования, но зачастую эти границы точно указаны быть не могут. Так, прикладная теория упругости занимается в основном расчетом пластин, оболочек и некоторыми сложными задачами расчета брусьев (понятия о брусе, пластинке и оболочке даны в 1.2), привлекая для решения соответствующих задач более сложный математический аппарат, чем сопротивление материалов, но не-  [c.10]

Понятие о прочности кристаллических структур, основанное на теории дислокаций и аморфных структур, основанное на наличии микродефектов, вполне приемлемо и для полимеров. Но поскольку полимеры обладают ярко выраженным свойством ползучести, для них этого понятия оказывается недостаточно. То обстоятельство, что прочность полимеров наряду с другими факторами зависит также от продолжительности действия нагрузки, можно объяснить, только принимая во внимание явление ползучести.  [c.35]

Исторически создание основ науки о прочности — сопротивления материалов в семнадцатом и восемнадцатом веках может быть отмечено обнародованием закона Гука (1660 г.), уравнения изогнутого бруска (Яков Бернулли в 1705 г.), теории продольного изгиба стержня (Эйлер, 1744 г.), теории сдвига и кручения валов (Кулон, 1776—1787 г.), определения видов деформации и понятия о модуле упругости (Юнг, начало XIX в.).  [c.13]

В первом разделе книги освещены основные положения теории надежности ПТМ. Здесь приведены общие понятия о надежности, нагруженности, прочности и износостойкости ПТМ. В дру-  [c.3]

Изложены основы теории. Даны понятия о напряжениях, деформациях, расчетных схемах, методах расчета конструкций, работающих при различных видах нагружений. Описаны методики расчета реакций в опорах, определения запаса прочности и допустимых напрял<ений. Приведены примеры расчетов и контрольные вопросы.  [c.223]

Здесь — расчетное напряжение, отвечающее первой теории прочности [о]р и — допускаемые растягивающие и сжимающие нормальные напряжения. Иногда вместо термина расчетное напряжение предпочитают понятие напряжение эквивалентное .  [c.148]


Как отмечали ранее (раздел 2.2), понятию отказа в теории надежности соответствует принятое в науке о прочности понятие предельного состояния. Возможны различные варианты предельных состояний, ограничивающих условия нормальной эксплуатации аппаратов, например, потеря прочности, потеря жесткости и т.п. Существует также много способов разрушающих испытаний для оценки работоспособности материалов, конструкций или сварных соединений в условиях достижения какого-либо из возможных предельных состояний.  [c.138]

Из личного опыта известно, что многие преподаватели считают вопрос о Н. С. излишне сложным для изучения в технику-мовской аудитории и не заслуживаюш,им внимания с точки зрения утилитарных задач предмета. С такой позицией нельзя согласиться. Понятие о простом и сложном в значительной мере субъективно, и от уровня знаний и мастерства самого преподавателя зависит, воспримет ли учащийся тот или иной вопрос как простой или сложный, насколько ясно он поймет его сущность. Тенденция уклониться от разбора вопросов о Н. С. неизбежно приводит к формализации и рецептурности курса, что противоречит самому духу и характеру предмета. Ясно, что без четкого понимания основ теории Н. С. невозможно четко изложить гипотезы прочности и тем более невозможно понять существо этого вопроса. Представление о сложности темы в значительной степени объясняется излишней математизацией изложения, обилием тригонометрических и алгебраических преобразований в ущерб раскрытию физического смысла вопроса. Главное-— довести до сознания учащихся основные понятия, а их доказательства и математические выкладки свести к минимуму.  [c.153]

Во второй части изложены методы определения перемещений и сложных сопротивлений, даны теория и порядок расчета статически неопределимых балок и рам, приводятся задачи динамики, излагаются вопросы циклической прочности материалод. В отдельные главы вынесены понятия о механике разрушения и малоцикловой усталости материалов. На изучение этих вопросов обращалось особое внимание участников семинаров, проводимых Министерством высшего и среднего специального образования РСФСР в 1979 и 1984 гг. в Москве.  [c.3]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Как правило, обсужденные выше методы построения предельных поверхностей основаны на представлении слоистого композита в виде составного анизотропного материала, и для построения предельных поверхностей используют свойства слоя, критерий прочности слоя и теорию слоистых сред, позволяющую осуществить переход от напряжений и деформаций композита к напряжениям и деформациям в любом слое. В противоположность этому Пуппо и Эвенсен [27] предложили в своем подходе рассматривать слоистый композит как однородный анизотропный материал, введя коэффициенты взаимодействия и понятие о главных осях прочности. Еще один метод оценки прочности слоистого композита как квазиодно-родного материала был предложен By и Шойблейном [28].  [c.144]

В России основы науки о трении и изнашивании были заложены в период организации Российской академии наук. Великий ученый М. В. Ломоносов сконструировал прибор для исследования сцепления между частицами тел долгим стиранием , который явился прототипом современных приборов для определения износостойкости материалов. М. В. Ломоносов является основоположником теории изнашивания материалов и эспериментальных исследований в этой области, он связал понятие о прочности с представлениями о силах связи между частицами. Занимаясь подбором материалов для опор часовых механизмов, М. В. Ломоносов указал на целесообразность применения для этой цели стекла.  [c.19]


Большой интерес среди инженеров вызвала серия экспериментальных исследований, проведенных Фойхтом и его учениками с целью разъяснить понятия, относящиеся к прочности материалов. Работая на образцах, вырезанных из крупных кристаллов каменной соли, Фойхт нашел, что сопротивление растяжению весьма сильно зависит от ориентации оси образца относительно кристаллографических осей. Оно зависит также и от характера поверхности образца. Фойхт показал, что легкое травление боковой поверхности стеклянных образцов приводит к резкому повышению их сопротивления. Равным образом им было показано, что при неоднородном поле напряжений сопротивление в точке зависит не только от величины напряжений в этой точке, но также и от степени их изменений от точки к точке. Сравнивая, например, предельные сопротивления растяжению изгиба для каменной соли и для стекла, он находит, что наибольшее напряжение разрушения при изгибе почти вдвое превышает соответствующее напряжение при разрыве. Много испытаний было проведено им в условиях сложного напряженного состояния с той целью, чтобы проверить теорию Мора. Все эти испытания выполнялись на хрупких материалах, и результаты их не совпадали с теорией. Фойхт пришел к заключению, что вопрос о физической сущности прочности слишком сложен и что построить единую теорию, которую можно было бы с успехом применять ко всем видам строительных материалов, невозможно.  [c.413]

Вязкая прочность — понятие обратное хрупкой прочности, соответствует сопротивлению разрушению в условиях пластической деформации. По единой теории прочности Я. Б. Фридмана (см. ниже) вязкая прочность характеризуется сопротивлением срезу — константо прочности, не зависяш ей от внда напряженного состояния. Представление о сопротивлении срезу как константе прочности не является, однако, общепризнанным и, по мнению ряда исследователей, справедливо лишь в неко торых частных случаях, например для чистых металлов с простой атомно-кристаллической решеткой [20, 83, 84, 851.  [c.31]

Странно, что в работах, где рассматриваются обобщенные измерения , ре-презентационная теория измерений , не ставится вопрос о том, почему, с какой целью в рамках единого понятия, единой теории объединяются такие принципиально отличающиеся операции, как например, приписывание марок автомобилям, определение социального статуса человека, определение давления, температуры, объема и других физических свойств материальных объектов. Тот факт, что во всех подобных случаях результат выражается числом (или шифром, который может быть закодирован, то есть выражен числом), поскольку применяются математические методы, сам по себе не требует единой теории таких операций (математика — универсальный инструмент теорий). Имеется большое разнообразие и других операций, результаты которых выражаются числом (например, операции расчета прочности сооружений), но сторонники репрезентационной теории измерений не относят их к обобщенным измерениям .  [c.32]

Для объяснения механизма пластического деформирования была разработана теория дислокаций. По этой теории при пластическом дес юрмировании в металле образуются, перемещаются и взаимодействуют между собой и с другими дефектами кристаллического строения линейные несовершенства, называемые дислокациями. Впервые понятие о дислокациях было введено в 1934 г. Тэйлором в Англии и одновременно венграми — Орованом и Поляки. Теория дислокаций, получившая в последнее время экспериментальное подтверждение , объясняет многие явления, протекающие в металлах, в том числе низкую реальную прочность металлов по сравнению с их теоретической прочностью.  [c.100]

Для характеристики напряженного состояния материалов используют понятие о коэффициенте их мягкости или жесткости а, который представляет собой отношение максимального касательного напряжения Ттах (критерия П1 теории прочности) к наибольшему приведенному напряжению растяжения 5тах, вычисляемому по И теории прочности [247]. Для одноосного растяжения коэффициент а = 0,5, это так называемое жесткое нагружение для кручения а = 0,8 для одноосного сжатия а = 2 — мягкое нагружение, когда хрупкий при растяжении металл становится пластичным.  [c.193]

Само понятие о стесненном кручении стержня уже было дано выше (см. 11.1). Здесь следует добавить, что развитие инженерной теории стесненного кручения оказалось особенно необходимым для стержней с незамкнутым контуром сечения, которые находят широкое применение в строительстве, кораблестроении, авиастроении и т. д. Дело в том, что возникающие при стесненном кручении нормальные напряжения в таких стержнях мо-г иметь большие значения и оказывают существенное влияние на их прочность и жесткость. Общая теория деформирования тонкостенных стержней открытого профиля создана чл.-кор. АН СССР В. 3. Власовым, выда-юпщмся ученым, внесшим крупный вклад в строительную механику тонкостенных конструкщш и оболочек.  [c.321]


Смотреть главы в:

Прикладная механика  -> Понятие о теориях прочности

Руководство к решению задач по сопротивлению материалов  -> Понятие о теориях прочности

Сопротивление материалов  -> Понятие о теориях прочности

Основы технической механики Издание 2  -> Понятие о теориях прочности

Сопротивление материалов Издание 13  -> Понятие о теориях прочности

Основы технической механики Издание 2  -> Понятие о теориях прочности



ПОИСК



25 — Понятие прочности — Понятие

Понятие о новых теориях прочности

Понятие о теориях (гипотезах) прочности и их значении

Понятие о теориях процессов накопления рассеянных мнкродефекИдеи В, В. Новожилова о перспективах построения критерия прочности при сложном нагружении

Прочность Понятие

Теории прочности

Теории прочности и их применение Понятие о теориях прочности



© 2025 Mash-xxl.info Реклама на сайте