Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постоянная старения

Доля полимеров среди конструкционных материалов постоянно увеличивается. В ряде случаев они успешно конкурируют с металлами. Поэтому необходимо повышать надежность, долговечность и конструкционную прочность полимерных материалов, предупреждать их старение. На рис. 19.2 приведена зависимость деформации различных материалов от деформирующего усилия. Так, у твердых металлов после возрастания усилия выше предела упругости (точка В) быстро наступает разрыв. У пластмасс после превышения предела упругости (точка В) наблюдается значительная деформация, увеличивающаяся непропорционально действующему усилию.  [c.339]


Остальные параметры обобщенной модели не зависят от углового положения ротора и являются постоянными величинами, если пренебречь такими явлениями, как старение, деформация конструктивных элементов, упругость вращающегося ротора, зависимость активных сопротивлений от частоты переменного тока и т. п. Подобные допущения общеприняты в теории ЭМП. С учетом сделанных допущений рассматриваемая модель ЭМП представляет собой линейную систему с сосредоточенными параметрами, часть которых постоянна, а часть зависит от пространственного положения. Эта система позволяет моделировать электромеханические процессы при взаимном перемещении катушек, электромагнитные процессы в катушках с током и процессы выделения теплоты в активных сопротивлениях и при механическом трении вращения. Все остальные процессы и явления, присущие различным ЭМП, остаются за пределами возможностей модели. Тем не менее линейные модели с сосредоточенными параметрами оказываются достаточными для построения теории основных рабочих процессов ЭМП.  [c.58]

Старение неорганических диэлектриков протекает более интенсивно на постоянном напряжении. В процессе ионной электропроводности происходит перенос ионов, т. е. вещества, что приводит к необратимому изменению химического состава материала в объеме образца или изделия. Поэтому др диэлектрика может уменьшить-  [c.181]

Наиболее просто протекают стационарные процессы, когда скорость процесса постоянна или колеблется относительно среднего значения. Это происходит в том случае, если все факторы, влияющие на скорость процесса, стабилизировались и нет причин, изменяющих интенсивность процесса. Зависимость U (/) имеет обычно линейный или близкий к нему характер. Такая закономерность характерна для установившегося периода износа, дл некоторых видов коррозии и других процессов. Если при старении возникают факторы, которые интенсифицируют или, наоборот, замедляют скорость его протекания, т. е. скорость процесса у изменяется монотонно, функция U (/) будет иметь нелинейный вид и соответственно описывать интенсификацию или затухание процесса повреждения материала изделия. Например, увеличение износа сопряжения приводит к росту зазоров и соответственно к повышению динамических нагрузок, которые интенсифицируют процесс (см. гл. 2, п. 3). Таким образом, ход процесса в этом случае связан с тем, что его скорость зависит не только от внешних факторов, но и от степени повреждения U. Поэтому сам процесс (его результат) влияет на интенсивность дальнейшего его протекания. Это условие может быть записано как  [c.100]

Обсудим условия (5.2) — (5.8). Соотношения (5.2) означают от сутствие ползучести непосредственно в момент т приложения напряжений. Функция ср (т) в условии (5.3) определяет процесс старения в зависимости от закона изменения возраста материала. Будем далее именовать ф (т) функцией старения. Функция старения ф (т) есть предельное значение меры ползучести С (оо, т), которое существенно зависит от возраста материала т в момент загру-жения. При всех т То функция ф (т) непрерывна и ограничена.. С увеличением возраста т материала функция ф (т) не возрастает и стремится к постоянной Со, т. е.  [c.61]


Устойчивость на конечном интервале времени. Точное решение задач устойчивости на конечном интервале времени в смысле определений из 1 п. 6 затруднительно. Поэтому здесь представляет интерес развитие различных приближенных и численных методов. Приближенные методы (аналогичные изложенным в 1, 2) исследования задач устойчивости вязкоупругих армированных стержней на конечном интервале времени изложены в статье [31]. Здесь же приведем результаты численного решения задачи. При численном решении строилась функция у (t, х) посредством решения уравнения для прогибов с граничными условиями, соответствующими конкретным способам закрепления концов стержня Ядро ползучести взято в виде (1.7), а функция старения ф (т) в виде.(1.37). Рассмотрен стержень (как и в 1), состоящий из двух кусков, одинаковой длины с постоянным внутри каждого куска , возрастом. Безразмерные переменные введены по формулам.  [c.265]

Для анализа зависимости критического времени Го от возраста материала был проведен численный расчет для стержня с граничными условиями (5.1). На стержень действует сжимающая сила Р и распределенная поперечная нагрузка постоянной интенсивности 5. Ядро ползучести материала стержня имеет вид (5.9) с функцией старения ф (т) = -Ь ИгТ "-. Стержень состоит из двух равных участков. Возраст одного из них постоянен р1 = 5 сут, а возраст второго участка ра варьировался от 5 сут до 50 сут. Были выбраны следующие числовые значения параметров задачи = 2,0-10 МПа, = 0,238-10- МПа , = 1,85-10- МПа- сут.  [c.276]

В регулировочном шкафу помещается необходимое для эксплуатации печи электрооборудование оно предназначено для того, чтобы обеспечить 1) автоматическую регулировку температуры и ее контроль 2) непрерывную запись температуры 3) постоянный контроль тока и напряжения 4) корректировку расхода энергии, связанную со старением нагревательных стержней.  [c.266]

Убедительно подтвердил роль сегрегаций в деформации поликристаллов Коттрелл [53]. Значения Ау для железа (суммарное содержание С и N 0,001 %) были определены [53] в интервале температур в образцах, термически обработанных по разным режимам (рис. 2.13), которые заключались в закалке образцов и последующем старении с различными выдержками при 140 °С. Величина /Су остается постоянной для всех режимов (см. рис.  [c.55]

При изменении полярности выпрямителя влага будет поступать из окружающей среды к сооружению. Таким образом, при катодной защите под изоляционное покрытие трубопроводов и других защищаемых сооружений будет постоянно поступать влага, которая значительно ускоряет процесс старения изоляционных покрытий. Так, например, через два-три года эксплуатации вновь уложенного газопровода, имеющего катодную защиту, качество изоляционного покрытия снижается на 25—40 процентов. Это связано еще с тем, что в условиях Башкирии подземные нефтегазопроводы, емкости и резервуары промерзают на глубину до 1,5 м, а это в свою очередь приводит к деформации изоляционных покрытий замерзшей влагой,  [c.32]

Следует учитывать и атмосферные влияния, например, при выборе подходящего лакокрасочного материала. Можно эффективно ограничить воздействие ультрафиолетовой части солнечного света на старение полимерных покрытий, применяя, например, алюминиевый пигмент или окись железа. Хлоркаучуковые покрытия имеют низкую стойкость в атмосферных условиях. Целесообразно частично заменять их эпоксидными покрытиями. Защита нагреваемых стальных поверхностей в открытом пространстве очень сложна, особенно в тех случаях, когда оборудование не эксплуатируется в течение длительного времени. Защитное покрытие должно быть не слишком толстым, так как оно по тепловому расширению значительно отличается от основного материала, и в то же время не слишком тонким, чтобы противостоять атмосферным влияниям. Поверхности, подверженные периодическому или постоянному воздействию воды, также должны быть снабжены тщательно выбранной защитой. Конструкции, подверженные вибрации, следует защищать эластичными лакокрасочными покрытиями. Нельзя забывать о том, что атмосферные условия оказывают неблагоприятное влияние на грунтовые лакокрасочные покрытия и их воздействие на последние должно быть как можно более кратковременным.  [c.94]


Исследованиями жаропрочных сплавов па никелевой основе, применяемых в конструкциях ГТУ, в широком диапазоне температур установлена весьма сложная зависимость их сопротивления циклическим нагрузкам. Предел выносливости с повышением температуры испытаний примерно до 1000 К сохраняется постоянным или изменяется весьма незначительно. В области температур 1050— 1100 К обычно заметно некоторое повышение сопротивления усталости и лишь для более высоких температур характерно его снижение. Особенно существенные изменения претерпевает форма кривой усталости. Как правило, в области комнатной и умеренно высоких температур кривая усталости состоит из наклонного и горизонтального участков. При температурах, превышающих температуру старения, горизонтальный участок кривой усталости исчезает и появляются резкие переломы кривых усталости в сторону снижения сопротивления циклическим нагрузкам [5, 6].  [c.376]

Наличие выдержек порождает ползучесть, зависящую от времени, отсчитываемого каждый раз от начала выдержки, и от напряжения, являющегося при мягком нагружении постоянным. По гипотезе старения форма изохронных кривых ползучести для разных напряжений является подобной, и накопленная деформация неустановившейся ползучести в пределах цикла с выдержкой выражается как  [c.21]

Рис. 113. Связь между прочностью и сопротивлением КР в зависимости от искусственного старения сплавов серии 7000 [144] параметры искусственного старения — продолжительность старения при постоянной температуре н температура старения (изохронный процесс) а — показатели прочности (предел прочности, предел текучести, твердость) б — сопротивление КР (время до разрушения, пороговый уровень напряжений) Рис. 113. <a href="/info/553145">Связь между</a> прочностью и сопротивлением КР в зависимости от <a href="/info/57728">искусственного старения сплавов</a> серии 7000 [144] параметры <a href="/info/1778">искусственного старения</a> — продолжительность старения при постоянной температуре н температура старения (изохронный процесс) а — <a href="/info/277611">показатели прочности</a> (<a href="/info/1682">предел прочности</a>, <a href="/info/1680">предел текучести</a>, твердость) б — сопротивление КР (время до разрушения, пороговый уровень напряжений)
Проблема чувствительности динамических систем, особенно-систем управления, к изменению параметров приобретает в современной технике весьма важнее значение. Интерес к этой проблеме носит двоякий характер. С одной стороны, при физической реализации систем автоматического управления мы постоянно встречаемся с неконтролируемыми изменениями параметров, возникающими вследствие старения элементов, воздействия внешней среды, взаимодействия с другими системами, а также как результат определенного технологического процесса изготовления системы. С другой стороны, современные системы автоматического управления все чаще осуществляются как системы переменной структуры, со специально заданным изменением параметров системы для осуществления свойств адаптации, как, например, в системах оптимального управления или в самообучающихся системах.  [c.79]

Основные причины, потребовавшие перехода от СБТ к КС УКП в объединении, следующие непрерывное усложнение техники и сокращение сроков ее морального старения ужесточение требований к уровню качества изделий, связанное с необходимостью обеспечить высокую конкурентоспособность на мировом рынке постоянно углубляющаяся специализация филиалов, качество продукции которых все в большей мере влияет на качество изделий, выпускаемых головным заводом.  [c.189]

Процесс формирования предельного состояния по условиям образования макротрещины, тип и степень малоцикловых повреждений при повторных термомеханических воздействиях определяются циклами температур и нагрузки, их сочетанием, а также циклическими и статическими свойствами материала. В значительной степени сопротивление усталости при длительном малоцикловом нагружении связано с деформационной способностью материала, изменением ее во времени в процессе старения при высоких уровнях циклических или постоянных температур.  [c.26]

Характер и интенсивность деформирования зависят от геометрии конструктивного элемента, времени вьщержки под постоянной нагрузкой, рабочих температур и номинальной нагрузки. В мембранной зоне происходит накопление деформаций при циклической ползучести, в зоне концентрации — знакопеременное циклическое деформирование. При этом достигается соответственно предельное состояние по условиям квазистатической (длительной статической) прочности или по условиям малоцикловой (длительной малоцикловой) прочности. Характерно, что в мембранной зоне длительное статическое разрушение в условиях повторного нагружения может происходить при различных значениях односторонне накопленных деформаций в зависимости от деформационной способности материала и процессов высокотемпературного старения и охрупчивания.  [c.123]

Для режима нагружения без высокотемпературной выдержки при постоянной нагрузке уравнение кривой длительного циклического деформирования (3.12) переходит в уравнение связи между циклическими напряжениями и деформациями при мгновенном деформировании с учетом старения материала в процессе малоциклового нагружения. Уравнения состояния материала при длительном малоцикловом нагружении в принятой форме [(3.12) или (3.13)] описывают основные процессы циклического упругопластического деформирования (упрочнение, разупрочнение, асимметрию, одностороннее накопление деформаций, циклическую анизотропию конструкционных материалов при малоцикловом нагружении.  [c.158]


Охрупчивающий эффект деформационного старения сказывается на ударной вязкости K V трубной стали и ее составляющих K V3 (зарождения трещины) я K Vp (распространения трещины). Наиболее четко эффект старения металла длительно эксплуатированных нефтепродуктов просматривается по относительной протяженности разрушения. Примерно до 10 лет эксплуатации протяженность разрушений сохраняет постоянное значение. При t > 10 лет отмечается значительное увеличение протяженности разрушения.  [c.367]

Таким образом, основным требованием, предъявля-мым к материалам для постоянных магнитов, является постоянство магнитного потока между полюсами магнита. Для этого необходимо, чтобы материал имел малый температурный коэффициент намагниченности и не был подвержен старению. Старение может быть обратимое и необратимое. Обратимое старение связано с изменением доменной структуры. Перемагничивание восстанавливает в этом случае первоначальные свойства постоянного магнита. Необратимое старение связано с изменением металлографической структуры. При необратимом старении магнитная энергия падает в связи с уменьшением  [c.198]

В качестве примера можно привести анализ процесса старения ненасыщенных полимеров (например, каучука) [1151. Данный процесс связан с поглощением кислорода из воздуха и последующим охрупчиванием полимера. Поэтому степень повреждения можно оценивать по количеству М поглощенного кислорода и = М. Процесс имеет четыре стадии (рис. 27, а). Вначале (зона /) происходит интенсивное поглощение кислорода, что обусловлено протеканием химических реакций с участием реакционноспособных групп самого каучука. Затем (зона II) скорость процесса поглощения снижена до некоторого постоянного значения, так как реакция замедлена ингибиторами. После того, как ингибитор израсходован, начинается активизация процесса (зона III), реакция имеет автокаталический характер. Наконец, скорость процесса окисления снова снижается (зона /К). Поскольку к началу III стадии уже потеряны ценные свойства каучука (понижается прочность на растяжение, увеличивается хрупкость), наибольшее значение имеет рассмотрение двух первых периодов старения.  [c.108]

Данная зависимость описывает широкий круг процессов и она удобна тем, что теория стационарных случайных процессов разработана достататочно полно. Интересно отметить [22], что поскольку дисперсия случайного стационарного процесса постоянна D А (0 = onst, то дисперсия данного процесса старения D v(01 при возрастании функции у t) будет возрастать, а при убывании — убывать (рис. 31, д и е). Если скорость процесса не зависит функционально от времени, то процесс (по отношению к 7) будет стационарен. В еще более общей форме поведение скорости процесса старения может быть дано в виде 1221  [c.116]

Испытание на надежность сложных систем. Наличие одно-го-двух опытных образцов сложных систем и их высокая безотказность исключают применение традиционных методов испытания на надежность, применяемых для относительно простых изделий. Развитие методов испытания в сочетании с прогнозированием и использованием априорной информации, разработка алгоритмов по оценке надежности с учетом постоянно поступающей лнформации о фактическом состоянии изделия, выявление экстремальных реализаций потери изделием работоспособности, сочетание испытания со статистическим моделированием, оценка и прогнозирование ведущих процессов старения — все это является основой для разработки методик испытаний сложных объектов, позволяющих на ранних стадиях создания новых изделий получить информацию об уровне их надежности.  [c.573]

Уравнения (2.1) и (2.2) вместе с соотношениями (2.9), (2.10) определяют решение задачи теории ползучести для непрерывно-нара-щиваемого призматического тела, подверженного старению. На рис. 2.2.2, 2.2.3 изображены зависимости напряжения от времени в различных точках наращиваемого тела при постоянной во времени силе Рд- Площадь <5 t) равномерно возрастает на интервале 1 + Т до величины 4 0 и далее остается постоянной. Геометрическое положение точки наращиваемого тела, родившейся в момент времени характеризуется величиной соответствующей площади б (I), равной ДЛЯ точек рис. 2.2,2, 2.2.3 соответственно 5о 1,315д 1,6<5о 2,51 о 45ц.  [c.86]

Пусть бесконечно длинный стрингер малой толщины h прикреплен к полуплоскости, находящейся в условиях плоской деформации. Будем читать, что материалы стрингера и полуплоскости обладают свойством ползучести, которое характеризуется неоднородностью процесса старения. Обозначим меру ползучести стрингера l (i, т), переменный по его длине возраст — Ti (х), модуль упругости — El (i). Соответствующие характеристики для полуплоскости будут Са t, т). Та х) и t). В дальнейшем примем, что El (t) = Е] = onst, Е2 t) = Е2 = onst, Та = onst. Кроме того, считается, что для материала полуплоскости коэффициенты поперечного сжатия для упругой деформации Vi (i) и деформации ползучести Va t, т) одинаковы и постоянны  [c.136]

Электрохимический пробой. Электрохимический пробои элек1ротехнических материалов имеет существенное значение при повышенных температурах и высокой влажности воздуха. Этот вид пробоя наблюдается при постоянном и переменном напряжениях низкой частоты, когда в материале развиваются процессы, обуою-влипающие необратимое уменьшение сопротивления изоляции (электрохимическое старение). Кроме того, электрохимический пробой может иметь место при высоких частотах, если в закрытых порах материала происходит ионизация газа, сопровождающаяся тепловым эффектом и восстановлением, например в керамике, оксидов металлов переменной валентности  [c.72]

Деформационног старение феррито-перлитной стали 22К изучали в условиях знакопеременного изгиба при постоянной амплитуде подвижного конца образца (начальная деформация поверхности 0,23%) при температуре 250° С на установке ИМАШ-ЮМ.  [c.216]

Рентгенографическое исследование микронапряжений, проведенное на рентгеновском дифрактометре ДРОН-1 в процессе старения при 500 и 650° С (рис. 139), показывает, что на первых стадиях изотермической выдержки наблюдается изменение микронапряжений, которое достигает максимального значения после 4 — 5 ч старения. При дальнейшем увеличении времени выдержки ширина дифракционных линий уменьшается до некоторого постоянного значения, которое больше, чем в образцах после их закалки.  [c.223]

Вязкость разрушения материала ВИ+ВД в закаленном состоянии определяли при комнатной температуре и при 4 К (см. табл. 3). При снижении температуры до 4 К вязкость разрушения уменьшается всего на 11 % по сравнению с комнатной температурой. Такое поведение типично для материалов аустенитного класса, у которых вязкость разрушения остается практически постоянной при изменении температуры от комнатной до 4 К. Эта характерная черта аустенитных материалов отмечается и в работе [12], авторы которой наблюдали снижение вязкости разрушения на 8 % У сплава In onel Х750 после закалки и двухступенчатого старения при снижении температуры от комнатной до 77 К. В работе [13] также установлена незначительная чувствительность вязкости разрушения листов и сварных соединений сплава In onel 718 к изменению температуры.  [c.307]


Смотреть страницы где упоминается термин Постоянная старения : [c.152]    [c.133]    [c.86]    [c.145]    [c.125]    [c.182]    [c.182]    [c.198]    [c.242]    [c.234]    [c.256]    [c.267]    [c.81]    [c.144]    [c.55]    [c.282]    [c.224]    [c.84]    [c.19]    [c.135]    [c.360]   
Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах (1990) -- [ c.152 ]



ПОИСК



Старение



© 2025 Mash-xxl.info Реклама на сайте