Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Корпус многослойный

В аппаратах с многослойной футеровкой корпуса для повышения долговечности и надежности защиты штуцеров и люков рекомендуется использовать многослойную футеровку из штучных изделий меньшей, чем для корпуса, толщины. Это особенно важно при использовании для защиты корпуса многослойной футеровки, выполненной из разнообразных штучных изделий и замазок.  [c.215]

Корпус многослойный 62 Коррозия водородная 4  [c.322]

Особо ответственные сосуды, как, например, корпуса атомных реакторов с толщиной стенки до 200 мм и выше, изготавливают из цельнокованых-обечаек, получаемых методом свободной ковки на прессе с последующей механической обработкой. Расчленение корпуса на отдельные заготовки производят исходя из возможностей технологического оборудования (рис. 8.64). Для повышения коррозионной стойкости внутреннюю поверхность подвергают автоматической дуговой наплавке аустенитным ленточным электродом. Обечайки соединяют кольцевыми швами многослойной сваркой под флюсом.  [c.288]


Назначение внутренней амортизации заключается в локализации возмущений внутри проточной части и устранение их передачи на корпус насоса. Сложность этой задачи состоит в большой площади контакта жидкости и стенок проточного тракта, через которую передаются возмущения. Ее решение в отдельных случаях можно осуществить, применяя многослойные конструкции корпусов насосов и трубопроводов, включающие виброизоляционные материалы.  [c.181]

Предел выносливости деталей, покрытых никелем и прошедших отпуск при температуре 400° С, снижается на 30—45%, а износостойкость их повышается в 2—3 раза. Химическое упрочнение никелем применяется для деталей топливной аппаратуры, силуминовых корпусов гидравлических насосов, золотников и поршней гидравлических агрегатов из дуралюмина Д1. Химическое никелирование рекомендуется использовать для защиты изделий, работающих в условиях среднего и повышенного коррозионного воздействия, вместо многослойных гальванических покрытий никель — хром и медь — никель — хром. Химический способ применяют при покрытии никелем керамики, пластмассы и других диэлектриков для создания металлической проводящей поверхности, а также для деталей из алюминия и его сплавов, титана и керамики, чтобы получить возможность паять их мягкими припоями.  [c.338]

Пластик покрывается специальной прозрачной пленкой, которая может быть использована для монтажа внутреннего оборудования сферы и для присоединения отдельных узлов между собой. Зазор между обечайками из стекла и эластичного пластика наполняется жидким диэлектриком (масло), который изолирует стеклянный корпус, выводы и многослойную обмотку.  [c.347]

Расчетная схема теплопередачи через многослойную цилиндрическую стенку [14, 42, 45, 49, 52] пригодна при малых радиальных размерах корпуса полимерных подшипников. Однако в реальных машинах радиальные размеры корпуса обычно значительно превышают его ширину (зубчатые колеса, стенки корпусных деталей и т. п.). Поэтому найденное по этой методике расчетное значение нагрузочной способности подшипника может оказаться значительно больше действительного. Предлагаемые в части I справочника универсальные расчетные схемы способствуют осуществлению более точных расчетов.  [c.5]

Однако, на наш взгляд многослойно-рулонированная конструкция корпусов аппаратуры высокого давления имеет большие резервы расширения эксплуатационных параметров и области ее применения. Так, в 1978 г. были созданы аппараты для гидротермального синтеза минералов, в частности, кристаллов кварца, на эксплуатационное давление 60 МПа и температуру 400 °С, которые успешно работают на Южно-Уральском заводе Кристалл . В 1979 г. изготовлены сосуды (емкостного типа) эксплуатируемые при давлении 150 МПа и нормальной температуре. В 1978—1980 г. объединением выпущен ряд аппаратов высокого давления для эксплуатации при температурах до —40 °С.  [c.15]


В настояш ее время, в связи с коренной перестройкой топливно-энергетической базы нашей страны в направлении резкого повышения роли ядерного горючего вместо природного газа, и, особенно, жидкого органического топлива, существенно возросла потребность в атомных энергетических установках. Организация их производства может быть основана на выпуске конструкций в многослойном исполнении, что в значительной степени будет способствовать решению всей проблемы. При этом, однако, следует иметь в виду, что атомные установки работают в более сложных и тяжелых условиях, чем сосуды химической промышленности и степень их ответственности значительно выше. Отсюда возникает необходимость в проведении комплекса работ, направленных на обеспечение надежности, долговечности п экономичности изготовления корпусов атомных реакторов, пароперегревателей, емкостей безопасности, защитных корпусов и др. Особое внимание должно быть обращено на вопросы, связанные с установлением напряженно-деформированного состояния многослойных стенок и сварных узлов конструкций, сопротивляемостью их хрупким и квазихрупким разрушениям, расчетами температурных полей в многослойных элементах, оценкой циклической прочности, изучением динамической и термоциклической стойкости конструкций, методам контроля, разработкой нормативных материалов по расчету на прочность.  [c.23]

Рис. 1. Корпус сосуда высокого давления многослойной конструкции с концентрическим (а) и рулонированным (6) расположением слоев Рис. 1. Корпус <a href="/info/133632">сосуда высокого давления</a> <a href="/info/268024">многослойной конструкции</a> с концентрическим (а) и рулонированным (6) расположением слоев
ПРИМЕНЕНИЕ МНОГОСЛОЙНЫХ МЕТАЛЛИЧЕСКИХ КОРПУСОВ РЕАКТОРОВ ДЛЯ АТОМНЫХ ИСТОЧНИКОВ ТЕПЛОСНАБЖЕНИЯ  [c.45]

Конструктивные особенности корпусов реакторов, специфические условия эксплуатации и повышенные требования к надежности и безопасности атомных станций промышленного теплоснабжения требуют проведения комплекса НИР и ОКР по созданию норм расчета на прочность, разработке правил устройства и безопасной эксплуатации, общих положений по сварке и правил контроля сварных соединений многослойных корпусов атомных реакторов.  [c.48]

Для окончательного выбора технологии и сварочных материалов, рекомендуемых для сварки многослойных соединений, применительно к изготовлению проектируемого рулонированного корпуса реактора гидрокрекинга, в ИркутскНИИхиммаше и на ПО Уралхиммаш была осуществлена сварка экспериментальных кольцевых соединений внутренним диаметром 800 мм с толщиной стенки 136—150 мм.  [c.124]

В связи с необходимостью дальнейшего совершенствования и расширения эксплуатационных параметров РСВД следует решить множество вопросов. Например, увеличения внутреннего давления и температуры стенок сосудов. С целью упрош ения аппаратурного оформления, повышения устойчивости проведения технологического процесса гидрокрекинга тяжелого дистиллятного и остаточного нефтяного сырья на установках мощностью 1 и 2,5 млн. т/год необходима разработка и изготовление реакторов внутренним диаметром 3200 мм на давление 20 МПа, температура стенки которых при одновременном воздействии водорода и сероводорода будет достигать значений 450—500 °С. Таким образом, по сравнению с реакторами гидрокрекинга, изготовленными в десятой пятилетке, отмечено существенное изменение условий эксплуатации корпусов многослойно-рулонп-рованной конструкции.  [c.15]

Особенности технологии вварки штуцеров больших диаметров в многослойные элементы корпусов определяются такими конструктивными факторами необходимостью вварки штуцеров на полную толщину стенки корпуса многослойностью стенки большой толщиной и жесткостью свариваемых элементов.  [c.76]

Таким образом, рулонная сталь марки 12ХГНМФ обладает высокой стабильностью структуры и достаточными физико-механическими свойствами в условиях длительной эксплуатации. Она может быть рекомендована в качестве конструкционного материала для корпусов многослойных сосудов высокого давления.  [c.102]


В 1982 г. лаборатория начала заниматься механизацией и автоматизацией неразрушающего контроля. Первые работы в этом направлении были выполнены для завода Уралхиммаш, по техническому заданию которого была создана установка для ультразвукового контроля наплавки торцев многослойных обечаек. Одновременно разрабатывались механизированные ультразвуковые локально-иммерсионные преобразователи с качающимся лучом для контроля кольцевых сварных швов корпусов многослойных сосудов. Затем были разработаны и поставлены на ряд заводов химического машиностроения малогабаритные установки для контроля сварных швов заготовок, днищ сосудов и сварных швов корпусов сосудов (заводы Уралхиммаш, Узбекхиммаш, Кемеровохиммаш, Дзержинскхиммаш, Черновицкий машзавод).  [c.184]

Особо ответственные сосуды, как, например, корпуса реакторов с толщиной стенки до 200 мм, изготавливают из цельнокованных обечаек, получаемых методом свободной ковки на прессе с последующей механической обработкой. Расчленение корпуса на отдельные заготовки производят исходя из возможностей технологического оборудования. Обечайки соединяют кольцевыми швами многослойной сваркой под флюсом.  [c.25]

Обогрев химических реакторов. При обогреве химических реакторов (Т = 100—400 °С) важна малая тепловая инерция индукционного способа и возможность равномерного нагрева больших поверхностей. Особенно эффективен индукционный обогрев при температурах свыше 200—250 °С. Емкости реакторов достигают десятков кубометров, давления — 10 МПа (автоклавы). Мощность системы обогрева достигает 300 кВт, частота 50 Гц. Удельные мощности обычно не превышают 10 Вт/см . Дальнейшего увеличения мощности без сильного насыщения стали можно достичь, покрывая стенку реактора тонким слоем меди. При этом получается двухслойная среда (см. гл. 3) и напряженность магнитного поля на границе слоев падает. Одновременно возрастает коэс )фицнент мощности устройства. Активное сопротивление и КПД незначительно снижаются. Индукторы часто секционируются для создания автономных температурных зон, регулируемых по сигналам от термопар (рис. 13-9). Для уменьшения взаимного влияния секции разделяются магнитными фланцами 4. Секционирование позволяет также равномерно загрузить фазы сети. Обмотки, 3 делают многослойными из прямоугольного провода с теплостойкой изоляцией. Тепловая изоляция 2 может прокладываться как между корпусом реактора / и обмотками 3, так и снаружи для обеспечения допустимой температуры электроизоляции.  [c.225]

Расчет футеровок на прочность. При проектировании футеровок важное значение имеет определение напряженного состояния системы кожух — футеровка, возникающего при воздействии на футеровку основных эксплуатационных факторов давления, температуры и набухания. Представление о напряженном состоянии футеровки можно составить, рассматривая футеровочный аппарат как многослойный цилиндр из материалов, обладающих различными физико-ме-ханнческими свойствами. При этом делают основные допущения корпус аппарата работает совместно с футеровкой материалы многослойного цилиндра однородны, изотропны и деформации их носят упругий характер величина коэффициента Пуассона для всех слоев принимается одинаковой и равной 0,25 при определении деформаций радиальные напрялсения не учитываются ввиду их малости  [c.182]

Для гидравлических приводов с расходом в сливных линиях до 1000 и 1500 л/мин фирма выпускает фильтры типа HEN1000K и HEN1500K. В корпусах фильтров установлены многослойные сетчатые фильтрующие элементы с размером ячеек 25, 40, 60 и 100 мкм и четыре наборных блока постоянных магнитов.  [c.167]

На рис. 21 представлена конструкция камеры для исследования коррозионной усталости при повышенных температуре и давлении водной среды. Корпус рабочей камеры 5, как и все детали, выполнен из нержавеющей стали. Для визуального наблюдения за развивающейся трещиной крышка 12 имеет две щели, закрытые кварцевым стеклом. Стекло 10 устанавливают изнутри камеры 1 прижимают планками 9, что обеспечивает дополнительное равномерное его прижатие через прокладку при создании внутри камеры давления. Чтобы избежать травмирования обслуживающего персонала в случае растрескивания стекла, щели закрываются предохранительной планкой 11т оргстекла. Крышка 2 открывает доступ к узлу зажима образца 8 в захватах / и 7. Через эту крышку также вводят термопару 4 для контроля температуры в камере. Среда нагревается нагревателем закрытого типа 3. Камеру монтируют на нижнем неподвижном захвате 1 через герметизирующую прокладку. Для уплотнения подвижного захвата 7 npeflv MOTpen многослойный сильфон 6 из нержавеющей стали (тип НС73-8-0,2/6), рассчитанный на допустимое давление 5 МПа).  [c.47]

Многослойные сосуды высокого давления более экономичны по сравнению с монолитными при необходимости обеспечения водородной стойкости. Корпуса таких конструкций могут изготавливаться из обычных материалов с центральной трубой из высоколегированной водородостойкой стали. Устройство дренажных отверстий в стенке обеспечивает удаление диффундирующего водорода и позволяет осуществлять контроль за состоянием внутреннего слоя.  [c.21]

В химической, нефтехимической, нефтеперерабатывающей и ряде других отраслей промышленности все шире используются процессы, происходящие при высоких давлениях и температурах. Освоенные отечественной промышленностью производства аммиака, карбамида, саиртов, гидрокрекинга нефти, полиэтилена и др. осуществляются с помощью аппаратуры работающей при давлении до 300 МПа и температуре до 500 °С. Создание крупнотоннажных производств для обеспечения возрастающих потребностей народного хозяйства привело к резкому увеличению габаритов и толщины стенки сосудов. Однако производство таких сосудов ограничено возможностями металлургического и металлообрабатывающего оборудования. Так, если в сороковых годах появление многослойных сосудов высокого давления [1] определялось в основном экономическими соображениями, то переход в настоящее время на многослойные конструкции основных несущих элементов сосудов показал нецелесообразность применения больших монолитных сечений. Последнее, открывая возможность изготовления корпусов сосудов практически с неограниченной толщиной стенки, привело к повышению их надежности и уменьшению опасности хрупких разрушений.  [c.38]


Исходя из условий транспортировки пара, размещать их целесообразно на территории промышленных узлов или в непосредственной близости от потребителей технологического пара, что предъявляет ряд требований к таким станциям, атомным реакторам и их корпусам. Создание АСПТ требует разработки недорогих, надежных и безопасных в эксплуатации корпусов атомных реакторов. Опыт применения многослойной конструкции в химическом и нефтехимическом производстве показал, что таким требованиям соответствуют корпуса атомных реакторов в многослойном исполнении.  [c.46]

Как показывает практика однослойная конструкция корпусов реакторов практически достигла предела своих возможностей в части надежности. Преодолеть трудности обеспечения высокой надежности в эксплуатации корпусов атомных реакторов можно, используя предложенные ИЭС им. Е. О. Патона АН УССР, ИркутскНИИхим-машем и ПО Уралхиммаш новые технические идеи, основанные на замене монолитной стенки реакторов на многослойную, изготавливаемую из качественной тонколистовой рулонной стали, и на создании новой высокоэффективной технологии изготовления обечаек путем навивки на центральную трубу рулонной полосы. Это дает возможность изготавливать реакторы неограниченных размеров с различной толш иной стенки.  [c.46]

Особенности тонкого металла и многослойность стенки снижают опасность хрупкого разрушения, характерного для толстого металла [1]. Проведенные исследования показали, что тонкий металл делает корпус более стойким не только к зарождению, но и к распространению трещин вследствие значительного снижения температуры перехода в хрупкое состояние.  [c.47]

Это позволило предложить корпус в многослойном исполнении для реактора АСПТ . В настоящее время к работе над корпусом привлечены многие организации, среди них такие как  [c.47]

На уровне технических предложений разработана конструкция и технология изготовления корпусов, установлены основные техникоэкономические показатели, определены заводы-изготовители, а также обоснован выбор основных и сварочных материалов. В частности, в качестве базового материала для многослойного корпуса реактора АСПТ рекомендована сталь 12ХГНМФ.  [c.48]

Ведутся технологические разработки, в частности, по вопросам сгарки рулонированного корпуса с применением разнесенных швов,, изготовления крышки с многослойным лазом, изготовления и вварки патрубков воротникового типа и др.  [c.48]

В процессе сворачивания многослойного корпуса, благодаря изгибу полотнища, ожидается устранение несовершенств его поверхности как и в случае рулонирования листовых конструкций.  [c.59]

Цель настоящей работы — повышение структурной стабильности теплоустойчивой стали 12ХГНМ, предназначенной для многослойных корпусов сосудов высокого давления. Предварительно установлено, что сталь в предполагаемых условиях эксплуатации недостаточно стабильна, поэтому ее необходимо дополнительно легировать сильной карбидообразующей присадкой. С этой целью изучали влияние небольших количеств (0,1—0,2 %) ванадия ниобия, титана и циркония.  [c.96]

В последние десятилетия в СССР и за рубежом для создания различных металлоконструкций все большее применение находят низколегированные стали повышенной и высокой прочности, которые являются наиболее эффективным средством значительного снижения веса конструкций, их стоимости и расхода стали. Металлургическими заводами совместно с Институтом электросварки им. Е. О. Патона АН УССР, ИркутскимНИИхиммашем, ПО Уралхиммаш разработана и освоена выплавка, прокат и термообработка теплоустойчивой низколегированной рулонной стали 12ХГНМ повышенной прочности для сосудов высокого давления химической и нефтехимической промышленности. Положительные результаты исследования механических свойств рулонной стали в области рабочих температур послужили основанием для проектирования сварного многослойного корпуса установки реактора гидрокрекинга нефти производительностью 1 млн. т продукта в год.  [c.119]

Корпус реактора гидрокрекинга собирается из многослойных рулонированных обечаек и монолитных концевых частей — днища фланца и крышки. Многослойные обечайки изготавливаются из следующих материалов центральная обечайка — из биметалла марки 20К + 0Х18Н10Т толщиной 24 мм слои (рулонная лента) — сталь 12ХГНМ толщиной 4 мм. Для концевых частей корпуса применена сталь 22ХЗМ. Многослойные обечайки свариваются между собой с днищем и фланцем кольцевыми швами. Таким образом, при изготовлении корпуса реактора имеется два типа кольцевых сварных соединений многослойных рулонированных обечаек с монолитными концевыми частицами и обечаек между собой.  [c.119]

Специальные численные эксперименты, проведенные при Rk, заданных статистически и детерминистически, показали, что количественные изменения, связанные с различным заданием Rk (при средних значениях Rk = 6 Ю- м К/Вт) сравнительно невелики для конкретных тепловых задач по прогреву оболочки многослойного корпуса реактора с п = 70.  [c.138]


Смотреть страницы где упоминается термин Корпус многослойный : [c.327]    [c.24]    [c.292]    [c.349]    [c.391]    [c.19]    [c.19]    [c.21]    [c.17]    [c.243]    [c.346]    [c.148]    [c.23]    [c.47]    [c.48]    [c.146]   
Основы конструирования аппаратов и машин нефтеперерабатывающих заводов Издание 2 (1978) -- [ c.62 ]



ПОИСК



Корпус

Кривошей Ф. А., Клецкий С. В. Определение температурных полей в многослойных рулонированных корпусах теплообменных аппаратов

Л многослойное

О выборе сварочных материалов для многослойных соединений, применяемых при изготовлении рулонированного корпуса реактора гидрокрекинга



© 2025 Mash-xxl.info Реклама на сайте