Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическое осаждение из газовой соединений

Технология пленок и покрытий Химическое осаждение из газовой фазы. Физическое осаждение из газовой фазы. Электроосаждение. Золь-гель-технология Металлы, сплавы, соединения  [c.17]

К покрытиям этого типа можно отнести покрытия, составные части которых образуются в результате гетерогенных химических реакций в газовой среде, окружающей обрабатываемое изделие, и осаждаются на его поверхности, формируя сплощной слой осаждаемого материала. Принимая терминологию, предложенную в монографии [11 ], целесообразно рассмотреть только покрытия, образующиеся при химическом осаждении из газовой фазы (под физическим осаждением при этом понимают процесс вакуумного испарения и конденсации). Методом газофазного осаждения могут быть получены почти все металлы, кислородсодержащие и бескислородные тугоплавкие соединения, интерметаллиды, различные сплавы и керметы. Исходными продуктами служат газообразные галогениды, карбонилы или металлорганические соединения, при разложении или взаимодействии которых с другими газообразными составляющими смесей (водородом, аммиаком, углеводородами, окисью углерода и др.) могут образовываться и осаждаться на обрабатываемой поверхности нужные материалы. В данной главе будут кратко изложены некоторые принципиальные положения технологии газофазного осаждения, приведены отдельные типы покрытий и примеры их практического использования.  [c.357]


Возможно соединение вольфрама химическим осаждением из газовой фазы [17,83] по реакции  [c.380]

В методах химического осаждения из газовой фазы благородный газ-носитель может присутствовать, а может и отсутствовать. В случае присутствия газа-носителя он в реакцию с компонентами кристаллизующегося вещества не вступает, а играет роль механизма управления процессом доставка продукта (создание направленного потока к месту кристаллизации) и регулирование концентрации веществ в потоке (управление скоростью роста). В этих методах обычно протекают необратимые химические реакции разложение какого-либо соединения при активации образующихся ионов или радикалов, что позволяет значительно ускорять процесс роста в потоках малой плотности и управлять структурой получаемого слоя реакции гидролиза, окисления, восстановления.  [c.315]

Волокна, проволоки и нитевидные кристаллы, применяемые в качестве упрочнителей, перед процессом диффузионной сварки чаще всего подвергают поверхностной очистке химическими методами. Это связано с наличием на поверхности упрочнителей различного вида замасливателей, смазок, применяемых в процессе изготовления волокон и проволок, тонких слоев окислов и др. Такая очистка осуществляется в щелочных или кислотных травителях. С целью повышения прочности связи на границе раздела упрочнителя с матрицей на поверхность волокон и нитевидных кристаллов в некоторых случаях наносят покрытие из металла или соединений методами химического, электрохимического осаждения, осаждения из газовой фазы и др.  [c.120]

Суть получения покрытия из газовой фазы заключается в том, что в результате гетерогенных химических реакций в среде газов, окружающей покрываемое изделие, на него выпадают составляющие покрытия, формируя сплошной слой осаждаемого материала. Исходными продуктами для осаждения служат газообразные галогениды, карбонилы или металлоорганические соединения, при разложении и при взаимодействии которых с дру. ими газообразными составляющими смесей (водородом, аммиаком, углеводородами, окисью углерода и др.) на покрываемой поверхности образуются нужные материалы.  [c.108]

Тонкие слои из газовой н паровой фазы наносят на подложку. В первом случае элемент пленки высаживают на поверхность в результате реакции диссоциации химического соединения, в котором связан элемент при высоких температурах, или вследствие реакции восстановления химического соединения наносимого элемента. Тонкий слой из паровой фазы получают путем сублимации элемента в условиях вакуума и последующего его осаждения на подложку. Тонкие слои полупроводникового материала можно наносить также в вакууме в изотермических условиях при переносе парообразного вещества на близкие расстояния. Этот способ основан на разнице скоростей испарения и взаимной диффузии наносимого элемента и материала подложки.  [c.287]


Химическое осаждение гидроокисей из раствора или газовой фазы путем гидролиза соответствующих тетрахлоридов или других соединений с последующим прокаливанием, причем получаются пленки толщиной 0,2—3 мм [8, 9].  [c.293]

Электроизоляционные неорганические пленки (ЭНП) в отличие от большинства остальных электроизоляционных материалов не получаются в свободном состоянии, а образуются в процессе изготовления на подложке, являющейся элементом той или иной электро-или радиотехнической конструкции. По своим показателям химической и радиационной стойкости, нагревостойкости, электрической прочности — ЭНП превосходят почти все известные материалы. Методы получения неорганических пленок весьма разнообразны, но все их можно объединить в две группы А — химические или электрохимические реакции вещества подложки с активным веществом среды — такими методами могут быть получены оксиды, нитриды, фториды и другие соединения, образующиеся на поверхности металлов и полупроводников Б — осаждение пленок из газовой или жидкой среды, не вступающей в реакцию с веществом подложки, испарение, ионное распыление, газофазные реакции и др.  [c.256]

Покрытия, осаждаемые из газовой и паровой фазы, в настоящее время все шире исследуются и применяются в практике. Если парофазный метод распространяется главным образом на металлы и те немногие соединения, которые испаряются без изменения химического состава, то газофазный метод позволяет получать покрытия из широкого круга неорганических тугоплавких соединений, причем осаждаемые соединения отличаются высокой чистотой. Несмотря на то что первые работы в области осаждения металлов и соединений из газовой фазы выполнены более сорока лет назад [131, 132], этот метод получил достаточное развитие и применение только в последнее десятилетие. Исследованию закономерностей процессов, происходящих при осаждении покрытий из газовой фазы, аппаратурному оформлению различных технологических вариантов, исследованию свойств получаемых покрытий посвящены многочисленные работы, обобщенные и проанализированные в монографии [11]. Некоторые материалы, не включенные в эту работу и представляющие теоретический и практический интерес, будут рассмотрены в гл. V.  [c.131]

Несмотря на совокупность приведенных положительных свойств, проблема, связанная со сроком службы лазеров на галогенидах меди и сохранением высокой стабильности параметров выходного излучения, остается открытой. В этих лазерах происходит более интенсивный расход рабочего вещества, что может быть обусловлено несколькими причинами. Во-первых, идет осаждение атомов меди из газоразрядной среды непосредственно на стенки относительно холодной разрядной трубки во-вторых, происходит диффузионный уход атомов меди и его молекулярных соединений в еще более холодные концевые секции АЭ в-третьих, низкое давление буферного газа увеличивает скорость диффузии рабочего вещества. Высокая химическая активность хлора и брома приводит к интенсивному (преждевременному) разрушению элементов электродных узлов и нестабильности горения разряда. Также не изучены процессы физико-химического взаимодействия газовой среды с кварцем и газовыделение кварца. К тому же для длительного сохранения параметров выходного излучения требуется стабилизация на оптимальном уровне многокомпонентного состава активной газовой среды, в которой происходит большое количество физических процессов и химических реакций. Для чистого ЛПМ многие проблемы, связанные с долговечностью и стабильностью параметров, уже успешно решены [26]. КПД в промышленных чистых ЛПМ составляет 0,5-1%, а съем средней мощности с одного АЭ достиг уровня 500-750 Вт [10].  [c.13]

Покрытия, получаемые методами химического осаждения из газовой фазы. Методы химического осаждения из газовой фазы (или газофЕзные методы) основаны на осаждении покрытий на нагретую подложку в результате разложения относительно нестойких газообразных веш,еств или взаимодействия двух пли более газообразных веш,ест (или переведенных в паровую фазу твердых веш,еств) с образованием на поверхности слоя химического соединения [4, 42, 54, 105].  [c.152]


Для получения сверхпроводящих лент из соединений интерметаллидов кроме того применяют метод химического осаждения из газовой фазы. Его использование позволяет синтезировать соединение NbaGe, имеющее наиболее высокую критическую температуру перехода в сверхпроводящее состояние.  [c.829]

Состав недиффузионных покрытий необходимо выбирать таким образом, чтобы обеспечить совместимость материала покрытия и основы при температурах эксплуатации, а также высокую адгезию покрытия с основой. Эти покрытия наносят методами химического осаждения из газовой фазы, а также различными методами напыления (пламенного, плазменного, детонационного). В последние годы развиваются методы электронно-лучевого напыления покрытий в вакууме, а также напыление различных элементов и соединений с использованием электрических и магнитных полей (ионно-плазменное, в том числе магнетрон ное, катодное напыление, нанесение покрытий в тдёю-щем и высокочастотном разряде и т. д.). При достаточно высокой температуре процесса часть напыленного покрытия может превратиться в диффузионное.  [c.432]

Метод химического осаждения из газовой или паровой фазы. Это химический процесс, в результате которого алюминий осаждается из разложившихся соединений алюминия. Алкил газ (такой, как диэтил-гидрид алюминия, точка кипения 55— 56° С) вводят в рабочую камеру после очистки в смеси с инертиым газом, таким как аргон или азот. После разрушения гидрида при нагревании (180° С) алюминий осаждается на подложку. Толщина слоя от 0,075 до 2,5 мм для различных материалов. Покрытие, полученное этим способом, эластичное, блестящее, с хорошей адгезией.  [c.402]

Химическое осаждение из газовой фазы с использованием разложения металлоорганических соединений (РМС-ХОГФ)  [c.173]

Основным методом получения нитевидных кристаллов карбида и нитрида кремния, окиси и нитрида алюминия и других тугоплавких соединений является осаждение из газовой фазы с использованием химических транспортных реакций, реакций пиролиза, восстановления летучих соединений и др. Промышленное производство нитевидных кристаллов указанным методом стало возможным после детального исследования Вагнером, Элиссом и др. механизма их роста, получившего название пар—жидкость—твердая фаза (ПЖТ). При получении методом ПЖТ нитевидных кристаллов тугоплавких соединений (40 ] в реакционную зону, в которой ведется осаждение соединения, специально вводят примеси некоторых элементов, образующих капельки жидких растворов с элементами соединения, например углерод, железо, кремний, алюминий и др. При получении нитевидных кристаллов карбида кремния используют жидкие тройные растворы железо кремний—углерод. Поверхность жидкой фазы является сильным катализатором участвующих в осаждении химических реакций, поэтому выделение вещества из газовой фазы происходит преимущественно на поверхности присутствующих в ростовой зоне жидких капелек. Далее происходит его растворение в капельке, диффузионный перенос через объем капли к границе раздела с подложкой и кристаллизация под каплей. В результате на подложке образуются вытянутые столбики конденсата, являющиеся нитевидными кристаллами. Ввиду малой скорости осаждения непосредственно на твердой поверхности кристаллы почти не растут в толщину, и отношение длины к диаметру у них достигает 1000 и более. В зависимости от условий получения они имеют диаметр от долей микрона до нескольких десятков микрон и длину до 60—80 мм.  [c.40]

Б-1. Получение пленок осаждением на газовой фазы. При осаждении из газовой (паровой) фазы пленки образуются в результате химических реакций, протекающих непосредственно на подложке, или же в приповерхностном слое, причем сам материал подложки в химические реакции не вступает. Осаждение обычно производится при пониженном давлении, которое в зависимости от режима может быть в интервале 0,01—130 Па. Активация химических реакций может осуществляться нагревом, тлеющим или ВЧ-разрядом, светом, электронной бомбардировкой и др. Оксиды металлов чаще всего получают пиролитическим разложением органических соединений типа алкоголятов или атилатов. Примером может служить реакция получения пленки пеитокси-да тантала пиролизом пвнтаатилата тантала в кислородной атмосфере при давлении 10—20 Па, температуре испарителя 400 К и температуре подложки 500—800 К  [c.258]

Осаждение из газовой фазы Химическая реакция, в результате которой распадается газообразное химическое соединение Мв1 и освобожденный Мв1 осаждается на Мег-ХА1е. газ нагретый твердое тело иа Мб2 Ме, Сг Мег Ре  [c.387]

Радикальным путем получения тугоплавких карбидов, нитридов и тому подобных соединений с плотностью, близкой к идеальной, является метод химического синтеза на поверхности осаждения из компонентов газовой фазы. Процесс проходит на атомномолекулярном уровне, что и обеспечивает расчетную плотность осаждаемого соединения. Однако установлено, что качественные в отношении герметичности покрытия можно получить в определенном интервале температур и парциальных давлений газовых компонентов. Существуют области критических температур и давлений, в которых сплошности покрытия практически достигнуть невозможно.  [c.116]

Первая группа методов основана на использовании химических транспортных реакций и характеризуется тем, что кристаллизация осаждаемого металла в этом случае осуществляется из паров его галоидных соединений (иодидов или хлоридов). Для получения монокристаллов молибдена используются преимущественно, хлориды (см. главу V). В общем дислокационный механизм роста кристаллов из газовой фазы сводится к спиральному присоединению атомов на ступеньке, образованной винтовой дислокацией [21, 77, 125], и в зависимости от режима осаждения позволяет получить поли- и монокристалли-ческие осадки. Скорости химических процессов осаждения металлов в молекулярном, кинетическом или диффузионном режимах очень велики и не зависят от механизма массообмена. Характер кристаллизации и скорость роста кристаллов осаждаемого металла в основном определяется относительным пере-насыш,ением газовой фазы. Осадки в виде высокочистых монокристаллов растут при малых степенях пересыщения газовой фазы, в то время как средние степени пересыщения обеспечивают рост массивных поликристаллов. При высоких степенях пересыщения образуются порошки посредством гомогенного зарождения в газовой фазе.  [c.81]


I - металлическая матрица 2 - волокно 3 - предварительная обработка волокон 4 - формование полуфабрикатов 5 - получение слоистого материала из полуфабрикатов 6 - формование (получение композиционного материала и придание формы) 7 - вторичная обработка 8 - применение 9 - элементарные волокна 10 - жгуты, нити 11 - ткани 12 - короткие волокна (монокристал-лические усы" и т. д.) 13 - улучшение смачиваемости волокон металлом и адгезии с ним, регулирование реакционной способности поверхности волокон 14 -химическое и физическое осаждение в газовой фазе 15 - металлизация и т. д. 16 — сырые полуфабрикаты в виде листов или лент 17 — металлизованные в расплаве листы или ленты 18 - пропитанная расплавом лента 19 - листы, полученные методом физического осаждения в газовой фазе 20 — придание материалу заданных анизотропных свойств 21 — горячее прессование 22 — горячее вальцевание 23 - горячая вытяжка 24 — HIP 25 — литье с дополнительной пропиткой расплавом 26 — парафинирование и т. д. 27 — механическая обработка 28 - механическое соединение 29 — диффузионная сварка 30 - парафинирование 31 — электросварка 32 — склеивание и т. д.  [c.242]

В основе процесса осаждения керамических покрытий из газовой фазы лежат реакции химического взаимодействия паров галогенидов металлов с газами или реакции пиролиза элементоксиорганических соединений. Обычно процесс осаждения керамических материалов ведут из смеси газообразных хлоридов и двуокиси углерода в присутствии газа-переносчика, в качестве которого наиболее часто применяют водород. Исходные газообразные вещества при нагревании реагируют между собою с выделением окисла того элемента, хлорид которого введен в реакционную смесь. Осаждение, например, окиси алюминия происходит на поверхности предварительно нагретого образца по реакции  [c.35]

Большой практический интерес представляют также покрытия из карбидов бора и кремния, отличающиеся высокой твердостью, износостойкостью, устойчивостью против воздействия химических агрессивных сред и стойкостью против эрозии в газовых потоках при высоких температурах. Данные по осаждению покрытий из этих соединений приведены, например, в монографии [II ], а также в работах [431—434]. Для осаждения карбидов бора и кремния можно использовать метод восстановления их галогенидов водородом в присутствии углеводородов н пиролиз соответствующих соединений, например кремнийорганических в случае осаждения кремния. Скорость осаждения карбидов бора и кремния, как и других карбидных покрытий, рассмотренных ранее, определяется прежде всего температурой подложки и составом газовой реакционной среды. Поданным работы [434], для получения качественных покрытий из карбида бора на графитовых ракетных соплах процесс осаждения необходимо вести при 1500° С в среде, состоящей из хлористого бора, метана и водорода. Осадки SI могут быть получены на графите при более низких температурах (1200—1250° С) восстановлением Si l4 водородом [11]. При концентрации Si l4 в смеси около 30% верхний слой покрытия представляет собой чистый кремний, а при концентрации 10% покрытие представляет собой плотный, твердый слой Si черного цвета. Диффузия свободного кремния в графит протекает при 1200° С довольно быстро и для получения сплошного слоя Si нужны непродолжительные выдержки.  [c.370]

Термохимическое осаждение обусловлено определенными химическими реакциями, в результате которых происходит избирательный массоперенос компонентов из газовой фазы на поверхность субстрата [4, 443]. Для синтеза покрытий наиболее подходящими оказыааются избранные группы соединений, легко переходящих в газообразное состояние (галогениды, карбонилы, гидриды, элементоорганические соединения). Реакции протекают с выделением в осадок компонентов, образующих покрытие. Оптимальные температуры для каждой конкретной реакции подбираются экспери-  [c.43]

При образовании и росте диффузионных покрытий из паровой фазы концентрация диффундирующего элемента на поверхности детали часто остается ниже 100%, т. е. пар не достигает состояния насыщения. В таких случаях применение термина конденсация пара неправомерно. Для процессов непосредственного химического взаимодействия реакционной газовой среды с твердой поверхностью непригоден и термин осаждение . Суть таких явлений более точно передает термин сорбция . Сорбция разделяется на две последовательные стадии — адсорбцию хемосорбцию) и абсорбцию. Сначала атомы физически или химически адсорбируются поверхностью, затем происходит взаимовстречная диффузия атомов адсорбата и субстрата, в результате чего в поверхностном слое образуются твердые растворы или химические соединения. По адсорбционно-диффузионному механизму формируются покрытия на горячей поверхности материалов, способных интенсивно растворять (поглощать) вещество, находящееся в парогазовой фазе. В то же время вторичному процессу растворения (диффузии) при благоприятных обстоятельствах могут предшествовать первичные процессы конденсации и осаждения, рассмотренные выше.  [c.48]

Существует много методов покрытия алюминием других металлов. Они включают метод распыленпя (металлизацию), алюминирование при распылении (термообработанные напыленные покрытия), погружение в горячий расплав, диффузионное алюминирование (алитирование), осаждение в вакууме, гальваническое покрытие, осаждение с помощью процесса электрофореза, химическое осаждение (нанесение покрытия из газовой или паровой фаз), плакирование или механическое соединение с помощью литья.  [c.401]


Смотреть страницы где упоминается термин Химическое осаждение из газовой соединений : [c.149]    [c.22]    [c.88]    [c.168]    [c.4]    [c.197]    [c.381]    [c.42]    [c.150]   
Лазеры на гетероструктурах (1981) -- [ c.173 , c.174 ]



ПОИСК



Осаждение

Осаждение Соединения

Осаждение химическое

ХИМИЧЕСКИЕ СОЕДИНЕНИЯ

Химическое осаждение из газовой



© 2025 Mash-xxl.info Реклама на сайте