Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод Гамильтона для непрерывных систем

До сих пор методы Лагранжа и Гамильтона излагались применительно к системам, имеющим конечное число степеней свободы. Целью настоящей главы является распространение этих методов на непрерывные системы, в которых число степеней свободы бесконечно велико. Это нетрудно сделать, если выбрана подходящая функция Лагранжа однако в отношении формы параметров, от которых зависят различные функции, имеется известный элемент неожиданности.  [c.117]


Следующим новшеством этой книги является включение в нее механики непрерывных систем и полей (гл. 11). Вообще говоря, эти вопросы охватывают теорию упругости, гидродинамику и акустику, однако в таком объеме они выходят за рамки настоящей книги и, кроме того, по ним имеется соответствующая литература. В противоположность этому не существует хорошей литературы по применению классических вариационных принципов к непрерывным системам, хотя роль этих принципов в теории полей элементарных частиц все время возрастает. Вообще теорию поля можно развить достаточно глубоко и широко еще до рассмотрения квантования. Например, вполне возможно рассматривать тензор напряжение — энергия, микроскопические уравнения неразрывности, пространство обобщенных импульсов и т. д., целиком оставаясь при этом в рамках классической физики. Однако строгое рассмотрение этих вопросов предъявило бы чрезмерно высокие требования к студентам. Поэтому было решено (по крайней мере в этом издании) ограничиться лишь элементарным изложением методов Лагранжа и Гамильтона в применении к полям.  [c.9]

Для сплошных материальных систем польза данного аналитического метода заключается главным образом в той легкости, с какой можно сделать переход к системе координат, отличной от декартовой и удобной для решения конкретных задач. Это, конечно, привлекает внимание к методу Лагранжа. Известное применение получил и метод Гамильтона в связи, главным образом, с исследованием квантовых свойств непрерывных материальных сред. Примечательным является пример из гидродинамики, когда удалось добиться некоторого успеха при описании движения невязкой жид-  [c.134]

Уравнения Гамильтона для непрерывных систем можно получить методом, подобным тому, который применялся в главе 7 для дискретных систем. Для простоты начнем с системы, рассмотренной в 11.1 и состоящей из материальных точек, отстоящих друг от друга на расстоянии а. Каждой обобщенной координате т),- будет соответствовать канонический импульс  [c.389]

Если вариационные методы, изложенные в предыдущих параграфах, не связывать с понятием непрерывной механической системы , то они могут служить ] я получения уравнений пространственно-временного поля. Принцип Гамильтона будет тогда служить компактным выражением свойств этого поля.  [c.394]

Цепь наших рассуждений, приведшая к распространению свойств консервативных систем на произвольные реоном-ны системы, основывалась на добавлении к фазовому пространству двух новых измерений t и pt. Можно действовать и другим методом, оставляя время t независимой переменной и сохраняя обычное фазовое пространство. Можно рассмотреть каноническое преобразование qi, pi в Q/, Pi, не вводя время t в число активных переменных преобразования. Время t входит в -такое преобразование только как параметр, т. е. уравнения преобразования, связывающие старые и новые переменные, непрерывно меняются. При таком зависящем от времени каноническом преобразовании функция Гамильтона Н не является инвариантной. Как видно из уравнения (7.4.13), функция Гамильтона Н для новой системы координат равна  [c.273]


Подобно тому как непрерывное движение динамической системы можно описать разностными уравнениями на поверхности сечения Пуанкаре, физическую задачу, сформулированную в виде отображения, можно представить в форме уравнений Гамильтона. Это позволяет использовать методы усреднения и резонансной теории возмущений, рассмотренные в гл. 2. Как показано в п. 3.1в, разностные уравнения можно преобразовать в дифференциальные с помощью периодической б-функции (3.1.33). В случае отображения  [c.235]

Соотношение, открытое Гамильтоном, дает новые заключения относительно метода вариации постоянных. Этот метод покоится на нижеследуюп1 вм интегралы системы дифференциальных уравнений динамики содержат известное число произвольных постоянных, значения которых в каждом отдельном случае определятся через начальные положения и начальные скорости движущихся точек. Если эти последние получают во время движения толчки, то благодаря этому изменяются только значения постоянных, а форма интегральных уравнений остается та же. Например, если планета движется по эллипсу вокруг солнца и нолучает во время движения толчок, то она будет после этого двигаться по новому эллипсу или, может быть, по гиперболе, во всяком случае по коническому сечению, а форма уравнений остается la же. р]сли такие толчки происходят не моментально, а продолжаются непрерывно, то явление можно рассматривать так, как будто постоянные изменяются непрерывно и притом таким образом, что эти изменения в точности изображают действие возмущающих сил. Эта теория вариации ностоян-дых представится в течение нашего исследования в новом свете.  [c.7]

Ряд Маклорена интеграла (1.17) начинается с невырожденной квадратичной формы. Конечно, уравнения Гамильтона могут допускать вырожденный интеграл. По-видимому, теорема 3 справедлива и в том случае, когда вместо непрерывно дифференцируемых интегралов вида (1.17) рассматриваются 2тг-периодические по t интегргшы, представимые в окрестности точки х = у = О сходящимися степенными рядами. Этот результат, вероятно, можно доказать методом работы [59]. Необходимо проверить, что изолированные периодические точки отображения за период возмущенной системы (1.18) составляют ключевое множество для класса функций, аналитических в окрестности начала координат.  [c.318]

Благодаря своей простоте квантовые решеточные системы оказываются ценными и в неравновесной статистической механике. Рассматривая предельно простой случай обобш,енной модели Изинга (в смысле, указанном в начале данного пункта), Радин [309] проанализировал поведение во времени величины R) для широкого класса начальных условий и локальных наблюдаемых. Можно показать, что в этом случае эволюция во времени не действует G-абелевым способом. Для физических приложений более важно другое обстоятельство оказывается возможным придать точную математическую форму традиционно принимаемому положению о том, что скорость приближения к равновесию в термодинамическом пределе должна быть связана со степенью непрерывности спектра эффективного гамильтониана. Подчеркнем, что здесь речь идет об эволюции во времени локальной наблюдаемой, погруженной в бесконечную систему, а поэтому гамильтониан, о котором мы говорим, совпадает с тем, который локально реализует эволюцию во времени бесконечной системы. Как оператор этот гамильтониан зависит от гильбертова пространства, на котором он действует в конструкции ГНС, и поэтому степень непрерывности его спектра зависит от представления. Коль скоро начальное состояние фо выбрано, степень непрерывности спектра гамильтониана можно связать с зависимостью функции е ( со — со )=бшш от пространственных переменных. Следует иметь в виду также, что метод Радина допускает обобш,ение на взаимодействия более широкого типа, чем описанная выше простая модель Изинга.  [c.388]


Смотреть страницы где упоминается термин Метод Гамильтона для непрерывных систем : [c.367]    [c.712]   
Классическая механика (1975) -- [ c.377 , c.389 ]



ПОИСК



Гамильтон

Гамильтонова система

Зэк гамильтоново

Метод Гамильтона

Метод Гамильтона для непрерывных

Метод непрерывности

Метод систем

Методы Лагранжа и Гамильтона для непрерывных систем и полей

Система непрерывная

Системы Гамильтона



© 2025 Mash-xxl.info Реклама на сайте