Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифракция когерентная

Домашние опыты. Следует выполнить хотя бы один опыт по интерференции, дифракции, когерентности и геометрической оптике. Мы рекомендуем также выполнить опыт 9.50 (квадрупольное излучение камертона).  [c.14]

В отсутствие дальнего порядка вся эта красивая математическая конструкция разваливается. Простейшая физическая картина обратной решетки — картина дифракции когерентных плоских волн на брэгговских плоскостях кристалла — теряет теперь всякий смысл.  [c.17]


Имя У. Кока уже известно советскому читателю по его книге Звуковые и световые волны . В своей новой книге Лазеры и голография У. Кок доходчиво и просто рассказывает об основных понятиях и проблемах когерентной оптики. Дифракция, когерентность и удивительные свойства голограмм в изложении Кока станут понятными даже неподготовленному читателю. Особенно заинтересует книга студентов младших курсов и старшеклассников.  [c.4]

Один из разделов этой главы посвящен вопросу о дифракции частично когерентного света. Понятие о степени когерентности исследуется в приложении к задаче  [c.8]

Если источник S нельзя считать точечным, то надо исследовать дифракцию квазимонохроматической волны и связанное с этим ухудшение видимости дифракционной картины. Изменение видимости V можно оценить теоретически и экспериментально. В расчетах освещенности дифракционной картины допустим когерентность освещения всего отверстия. В последующем (на примере дифракции на двух щелях) покажем, как изменяется видимость дифракционной картины при учете степени пространственной когерентности, зависящей от размеров источников света.  [c.282]

ДИФРАКЦИЯ ЧАСТИЧНО КОГЕРЕНТНОГО СВЕТА ОПЫТ ЮНГА  [c.304]

При освещении двух отверстий излучением протяженного источника света видимость дифракционной картины ухудшится. Это дифракция частично когерентного света (О < F < 1), описанию которой и посвящено последующее изложение. Пользуясь введенными ранее терминами, укажем, что в данном случае изучается пространственная когерентность.  [c.305]

Вспоминая рис. 5.5, на котором сопоставлены результаты интерференции двух монохроматических и двух квазимонохроматических волн, можно оценить, как видоизменится при использовании частично когерентного света картина дифракции на двух щелях V = 1), представленная на рис. 6.4(3. Очевидно, что если V < 1, то максимумы будут по величине меньше, а минимумы отличны от нуля (рис. 6.47). Приводимые ниже расчеты должны подтвердить справедливость этого качественного рассмотрения.  [c.306]

Однако в нашем случае среда представляет собой совокупность таких двумерных решеток, расположенных периодически вдоль 2 с периодом да- Если каждый слой решетки достаточно прозрачен, то часть света испытает дифракцию на первом слое, а часть проникнет до следующего слоя и частично испытает дифракцию на этом втором слое, остаток проникнет дальше и т. д. Таким образом, по найденному выше направлению (а, р, у) будет распространяться несколько когерентных волн с известной разностью хода, и мы должны для окончательного результата учесть их взаимную интерференцию.  [c.229]


Интерференционное поле, образующееся в области перекрытия опорной и предметной волн, конечно, не локализовано на поверхности фотопластинки. Как и в любом опыте с когерентными волнами, места повышенных и пониженных значений амплитуды суммарного колебания распределены во всем пространстве по тому или иному закону, зависящему от вида волновых фронтов. Поэтому в слое фоточувствительной эмульсии, всегда обладающем некоторой толщиной, образуется трехмерная структура почернений, а не двумерная, как приближенно предполагалось нами ранее. Вместе с.тем, законы дифракции света на трехмерных структурах имеют свои особенности (см. гл. X), которые, как сейчас выяснится, находят интересные применения в голографии.  [c.262]

Заканчивая изложение физических принципов голографии, сформулируем еще раз Соображения, лежащие в основе этого способа регистрации информации об объекте наблюдения, переносимой электромагнитным полем. Нас интересует информация, заключающаяся в распределении амплитуд и фаз в этом поле. Фотографирование распределения интенсивности в специально созданной интерференционной картине, возникшей при суперпозиции волнового поля объекта и когерентной ему опорной волны, дает возможность регистрации полной информации, переносимой изучаемым волновым полем. Последующая дифракция света на распределении почернений в фотослое голограммы восстанавливает волновое поле объекта и допускает изучение этого поля а отсутствие объекта наблюдения. Рассмотрим теперь некоторые практические применения голографии.  [c.266]

Кристалл одного вещества заменить кристаллом другого. Явлению этому можно дать полное количественное истолкование, если допустить, что рентгеновские лучи суть волны, испытывающие дифракцию на пространственной решетке, каковой является кристалл. Действительно, кристалл представляет собой совокупность атомов, расположенных в виде правильной пространственной решетки. Расстояние между атомами составляет доли нанометров (для кристалла каменной соли, например, расстояние от Ыа до С1 равно 0,2814 нм). Каждый атом решетки становится центром рассеяния рентгеновских волн, когерентных между собой, ибо они возбуждаются одной и той же приходящей волной. Интерферируя между собой, эти волны дают по известным направлениям максимумы, которые вызывают образование отдельных дифракционных пятнышек на фотографической эмульсии. По положению и относительной интенсивности этих пятнышек можно составить представление о расположении рассеивающих центров в кристаллической решетке и об их природе (атомы, атомные группы или ионы). Поэтому явление дифракции, будучи важнейшим и непосредственным доказательством волновой при-  [c.408]

Дело в том, что технические средства не в состоянии прямым путем измерить фазу столь высокочастотных колебаний, какими являются световые сигналы, поскольку реакция любого приемника света (фотоумножителя, фотодиода, фототранзистора и даже человеческого глаза) определяется значением средней интенсивности света. Однако решение этой задачи оказалось неожиданно очень простым. Д. Габор предложил использовать для получения голограммы интерференцию двух когерентных пучков света, называемых обычно объектным и опорным, а для восстановления изображения с голограммы — явление дифракции света.  [c.10]

При восстановлении голограммы требования к когерентности источников излучения значительно менее строгие, чем при ее получении. Требования к временной когерентности излучения определяются тем, что изображения объекта, полученные при дифракции света разных длин волн, не должны быть сдвинуты заметно друг относительно друга. Требования же к пространственной когерентности источников сводятся при восстановлении к ограничению угловых размеров источников. Этим требованиям удовлетворяют многие лазерные источники света, но неплохие результаты также можно получить при использовании ртутных ламп сверхвысокого давления, а иногда даже обычных ламп накаливания.  [c.36]

Принцип образования изображения в системе может быть рассмотрен как процесс двойной дифракции. Первая дифракция происходит на объекте 2, освещаемом плоской монохроматической волной, образуемой когерентным источником света /. Объект 2 расположен в передней фокальной плоскости объектива 3, который образует в своей задней фокальной плоскости 4 пространственный спектр объекта (т. е. осуществляет преобразование Фурье объекта). В плоскости голограммы 4, которая одновременно является передней фокальной плоскостью второго объектива 5, находится мультиплицирующий элемент, представляющий собой голограмму набора точечных источников, число и расположение которых соответствует желаемому числу и расположению размноженных изображений. В результате в плоскости голограммы 4 имеем произведение двух спектров Фурье объекта и набора точечных источников. Второй объектив 5 в свою очередь осуществляет преобразование Фурье объекта, находящегося в его фокальной плоскости. Как следствие. этого в плоскости изображения 6 получаем совокупность изображений исходного объекта, причем линейное увеличение системы 7 и размер изображений определяются соотношением фокусов объективов системы 7==/,//,. Очевидно, что размеры отдельных модулей могут быть большими (более 5—10 мм), они ограничиваются лишь полем изображения второго объектива 5. Это является большим преимуществом системы.  [c.63]


Дифракция нейтронов на кристаллах в настоящее время является не только хорошо изученным явлением, но и эффективным методом исследования, получившим название нейтронографии (по аналогии с рентгенографией). В самой ядерной физике нейтронография используется для определения знаков и абсолютных значений когерентных амплитуд рассеяния нейтронов на различных ядрах. В физике твердого тела и смежных с ней областях нейтронография используется для получения информации о структуре кристаллов.  [c.555]

Пучок излучения когерентного источника (см. рис. 7, г) претерпевает дифракцию иа изделии и в плоскости сканера образуется дифракционное изображение изделия, соответствующее дифракции Фраунгофера. Дифракционное  [c.64]

В настоящей статье принято, что свет состоит по существу из световых квантов, каждый из которых обладает одной и той же чрезвычайно малой массой. Математически показано, что преобразование Лоренца—Эйнштейна совместно с квантовыми соотношениями приводит к необходимости связать движение тела и распространение волны и что это представление дает физическую интерпретацию аналитических условий устойчивости Бора. Дифракция является, по-видимому, совместимой с обобщением ньютоновской динамики. Далее, оказывается возможным сохранить как корпускулярный, так и волновой характер света и дать с помощью гипотез, подсказываемых электромагнитной теорией и принципом соответствия, правдоподобное объяснение когерентности и интерференционных полос. Наконец, показано, почему кванты должны входить в динамическую теорию газов и почему -закон Планка является предельной формой закона Максвелла для газа световых квантов.  [c.639]

В истории оптики известен очень красивый и наглядный опыт, связанный с дифракцией когерентного излучения на двумерных решетках (так называемый эксперимент Аббе—Портера, рис. 9.11). По сути, он является примером уже упоминавшейся пространственной фильтрации и имеет самое прямое отношение к современной фурье-онтике и оптическим методам обработки информации.  [c.159]

Дифракция света от двух щелей. При рассмотрении дифракции плоской световой волны от щели мы видели, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели паралельно самой себе влево и вправо по экрану 5, (см. рис. 6.17) не приводит к какому-либо изменению дифракционной картины. Следовательно, если на з <ране Эх сделать еще одну щель, параллельную первой, такой же ширины h, то картины, создаваемые на экране каждой щелью в отдельности, будут совершенно одинаковыми. Результирующую картину можрю определить путем слол<ения этих двух картин с учетом взаимной интерференции волн, идущих от обеих щелей. Направим параллельный пучок когерентного света на непрозрачный экран с двумя идентичными щелями шириной Ь, отстоящими друг от друга на расстоянии а (рис. 6.24). Очевидно, в тех направлениях, в которых ни одна из щелей не распространяет  [c.143]

Для понимания интерференции и дифракции электромагнитной волны вводятся квааимонохроматические волны ("хаотически модулированные колебания" ). При введении этих понятий законы возникновения и распространения электромагнитных волн дополняют условиями обрыва колебаний оптических электронов в атоме и другими причинами, onpeдeляюn ими время когерентности. В рамках этой схемы обосновывается когерентность колебаний для точечных источников свети в пределах одного цуга волн, а затем выявляются условия пространственной когерентности, при которых может наблюдаться стационарная интерференционная картина от реальных источников.  [c.7]

Мы условились пока не рассматривать роли размеров источника (пространственной когерентности в явлениях дифракции). Однако из сказанного выше можно сделать очевидный качественный вывод чем уже щель, тем меньше должны сказываться размеры источника на распределении освещенности в дифракционной картине. Действительно, роль размеров источника света отчетливо проявится в том случае, когда суммарное уширение центрального максимума будет в основном обусловлено наложением дифракционных картин от различных участков источника света. Этот случай иллюстрирует рис. 6.29, где 1геальный источник условно заменен тремя точечными источниками, расположенными в его пределах.  [c.285]

Фактически здесь рассмотрены различные варианты опыта Юнга. Понятие частично когерентного света позволит оценить допустимые угловые размеры источника света, освещаюш,его два отверстия, и выяснить, как зависят эти размеры от расстояния между ними. Мы увидим, почему на первый взгляд простой опыт следует описывать с использованием представлений и об интерференции, и о дифракции частично когерентного света.  [c.304]

Дифракции чистично когерентного света на двух круглых отверстиях  [c.312]

ТО структура пучка, выходящего из лазера, оказываетея такой же, как и при дифракции нескольких когерентных плоских волн, падающих на экран с отверстием под небольшими углами, при условии, что форма эквивалентного отверстия совпадает с формой зеркал. В случае, например, прямоугольных зеркал угловое распределение амплитуды выражается функциями типа приведенных в 42. Если же резонатор соетоит из соосных сферических зеркал, то генерируемое излучение часто имеет вид гауссова пучка (см. 43). Фотографии, показанные на рис. 9.8 (см. стр. 185), получены для различных поперечных сечений пучка, выходящего из гелий-неонового лазера (>. = 632,8 нм). Как мы видим, интен-  [c.802]

Информационными параметрами ОИ являются пространственно-временнйе распределения его амплитуды, частоты, фазы, поляризации и степени когерентности- Для получения дефектоскопической информации используют изменение этих параметров при взаимодействии ОИ с ОК U соответствии с явле-. нпями интерференции, дифракции, поляризации, преломления, отражения, поглощения, расг еяння, дисперсии света, а также изменение характеристик  [c.48]


НОСТИ. Наоборот, дифрак- (сплошные линии) и п= 1/1,2 ция на крупных частицах (пунктирные). Числа у кривых— [Л. 359] связана в основ- значения kd. ном с возмущением излучения различными точками частицы в условиях постоянства разности фаз колебаний после возмущения. Из-за этого рассеяние на крупных частицах когерентно и возникают результирующие интерференционные явления и характерная сильно вытянутая вперед форма индикатрисы рассеяния. Правда, и в отсутствие дифракции с приближением п к единице рассеянное согласно законам геометрической оптики излучение отбрасывается только вперед Л. 265] (рис. 3-12). Дифракционная составляющая на крупных частицах сосредоточивается вблизи направления распространения прямого луча в угле примерно 1/р, где p = nflf/A—параметр дифракции.  [c.83]

При Мандельштама — Бриллюэна рассеянии механизм взаимодействия света с тепловыми колебаниями кристаллич. решётки (тепловыми фонопами) является таким же, как и для рассмотренного выше случая дифракции света с искусственно возбуждённым Г. (когерентными фонопами), однако в этом случае свет рассеивается во всех направлениях. При достаточно больших интенсивностях, когда напряжённость электрич. ноля в падающей световой волне 10 —10 В/см, это поле может влиять на гиперзвуковую волну, нак-рой происходит рассеяние, обеспечивая непрерывную под. качку в неё энергии. В результате происходит генерация интенсивного Г.— т. н. вынужденное рассеянпе Мандельштама — Бриллюэна.  [c.478]

Простейшая схема Д. г.— двухволновая 2 когерентных пучка пересекаются в нелинейной среде, падая с одной или разных сторон под одинаковыми углами к сё поверхности. Создаваемая ими интерференционная картина записывается в среде в виде периодич. структуры (решётки), на к-рой эти же пучки дифрагируют (с а-м о д и ф р а к ц и я). Это приводит к изменениям параметров пучков, поэтому записываемая решётка также изменяется по глубине регистрирующей среды. Для Д. г. важны среды с изменяюплимся под действием света показателем преломления п. Самодифракция 2 стационарных пучков в такой среде при совпадении экстремумов записываемой решётки (показателя преломления) и записывающего интерференционного поля по приводит к изменениям их амплитуд, т. е. к перераспределению интенсивностей пучков, но изменяет их разность фаз Дф (среда с локальным откликом). Если решётка сдвинута по фазе относительно интерференционного поля на угол, не кратный я, то изменяются амплитуды, т. с. интенсивности волн (среда с нелокальным откликом). При отом происходит перекачка энергии между волнами. Макс. перекачка соответствует рассогласованию решёток показателя преломления и интенсивности интерференционного поля на угол п/2 (сдвиговая четвертьволновая голограмма) при этом Дф—0. Одноврем. преобразование амплитуд и фаз при самодифракции 2 волн в среде с локальным откликом возникает либо в нестациопарном режиме, либо в случае тонкой решётки в результате появления высших порядков дифракции.  [c.624]

Условие когерентности при соударении адронов высоких энергий (с а 1ронами и атомными ядрами) является сипонимом дифракции. Если изменение импульса падающего адрона (массы т), умноженного па продольный радиус взаимодействия, не превыщает единицы, то конечная волновая ф-ция остаётся когерентной тгачальной волновой ф-11 ии и происходит дифракция. Для Д. д. протона это приводит к ограничению на об-  [c.656]


Смотреть страницы где упоминается термин Дифракция когерентная : [c.592]    [c.67]    [c.377]    [c.218]    [c.163]    [c.289]    [c.308]    [c.181]    [c.355]    [c.57]    [c.58]    [c.91]    [c.270]    [c.46]    [c.48]    [c.157]    [c.242]    [c.242]    [c.547]    [c.657]   
Модели беспорядка Теоретическая физика однородно-неупорядоченных систем (1982) -- [ c.156 ]



ПОИСК



Дифракция

Дифракция частично когерентного света Опыт Юнга

Дифракция частично когерентного света на отверстии

Интерференция и дифракция света Интерференция и когерентность

Интерференция и дифракция частично когерентного света

Когерентная (-ое)

Когерентность

Образование изображения при когерентном освещении как процесс двойной дифракции



© 2025 Mash-xxl.info Реклама на сайте