Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интерференция и дифракция света Интерференция и когерентность

Дело в том, что технические средства не в состоянии прямым путем измерить фазу столь высокочастотных колебаний, какими являются световые сигналы, поскольку реакция любого приемника света (фотоумножителя, фотодиода, фототранзистора и даже человеческого глаза) определяется значением средней интенсивности света. Однако решение этой задачи оказалось неожиданно очень простым. Д. Габор предложил использовать для получения голограммы интерференцию двух когерентных пучков света, называемых обычно объектным и опорным, а для восстановления изображения с голограммы — явление дифракции света.  [c.10]


Если на плоскую Д. р. падает параллельный пучок света, ось к-рего лежит в плоскости, перпендикулярной к штрихам решётки, то, как показывает расчёт, получающееся в результате интерференции когерентных пучков от всех N штрихов решётки пространственное (по углам) распределение интенсивности света (в той же плоскости) может быть представлено в виде произведения двух ф ний J Jg. Ф-ция Jg определяется дифракцией света на отд. штрихе, ф-ция Jjv обусловлена интерференцией N когерентных пучков, идущих от штрихов решётки, и связана с периодич. структурой Д. р. Ф-ция для данной длины волны Я определяется периодом решётки d, полным числом штрихов решётки N и углами, образованными падающим (угол 1 з) и дифрагированным (угол ф) пучками с норма-лью к решётке (рис. 2), но не зависит от формы штри- 057  [c.657]

Дифракция и интерференция частично-когерентного света  [c.58]

ИНТЕРФЕРЕНЦИЯ И ДИФРАКЦИЯ ЧАСТИЧНО КОГЕРЕНТНОГО СВЕТА  [c.451]

ИНТЕРФЕРЕНЦИЯ и ДИФРАКЦИЯ ЧАСТИЧНО КОГЕРЕНТНОГО СВЕТА [ГЛ. 10  [c.452]

Вспоминая рис. 5.5, на котором сопоставлены результаты интерференции двух монохроматических и двух квазимонохроматических волн, можно оценить, как видоизменится при использовании частично когерентного света картина дифракции на двух щелях V = 1), представленная на рис. 6.4(3. Очевидно, что если V < 1, то максимумы будут по величине меньше, а минимумы отличны от нуля (рис. 6.47). Приводимые ниже расчеты должны подтвердить справедливость этого качественного рассмотрения.  [c.306]

Однако в нашем случае среда представляет собой совокупность таких двумерных решеток, расположенных периодически вдоль 2 с периодом да- Если каждый слой решетки достаточно прозрачен, то часть света испытает дифракцию на первом слое, а часть проникнет до следующего слоя и частично испытает дифракцию на этом втором слое, остаток проникнет дальше и т. д. Таким образом, по найденному выше направлению (а, р, у) будет распространяться несколько когерентных волн с известной разностью хода, и мы должны для окончательного результата учесть их взаимную интерференцию.  [c.229]

Дифракция света от двух щелей. При рассмотрении дифракции плоской световой волны от щели мы видели, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели паралельно самой себе влево и вправо по экрану 5, (см. рис. 6.17) не приводит к какому-либо изменению дифракционной картины. Следовательно, если на з <ране Эх сделать еще одну щель, параллельную первой, такой же ширины h, то картины, создаваемые на экране каждой щелью в отдельности, будут совершенно одинаковыми. Результирующую картину можрю определить путем слол<ения этих двух картин с учетом взаимной интерференции волн, идущих от обеих щелей. Направим параллельный пучок когерентного света на непрозрачный экран с двумя идентичными щелями шириной Ь, отстоящими друг от друга на расстоянии а (рис. 6.24). Очевидно, в тех направлениях, в которых ни одна из щелей не распространяет  [c.143]


Для понимания интерференции и дифракции электромагнитной волны вводятся квааимонохроматические волны ("хаотически модулированные колебания" ). При введении этих понятий законы возникновения и распространения электромагнитных волн дополняют условиями обрыва колебаний оптических электронов в атоме и другими причинами, onpeдeляюn ими время когерентности. В рамках этой схемы обосновывается когерентность колебаний для точечных источников свети в пределах одного цуга волн, а затем выявляются условия пространственной когерентности, при которых может наблюдаться стационарная интерференционная картина от реальных источников.  [c.7]

Фактически здесь рассмотрены различные варианты опыта Юнга. Понятие частично когерентного света позволит оценить допустимые угловые размеры источника света, освещаюш,его два отверстия, и выяснить, как зависят эти размеры от расстояния между ними. Мы увидим, почему на первый взгляд простой опыт следует описывать с использованием представлений и об интерференции, и о дифракции частично когерентного света.  [c.304]

Точечный источник света S с длиной вол.иг.г X освещает два малых отверстия в экране А, к-рые становятся вторичными взаимно когерентными источникамп света (см. Дифракция света). На зкрапе В наблюдается и. к., вызванная интерференцией двух созданных систем волн. В соответствии с суперпозиции принципом напряжённость эл.-магн. поля Eq в произвольной точке Q ыкрапа В даётся суммой напряжённостей полей Elq  [c.166]

Определим точнее предмет исследования предлагаемой книги. Как всякий оптический элемент (призма, зеркало, линза, объектив и т. п.), голографический оптический элемент преобразует волновой фронт падающей на него световой волны фокусирует, отклоняет, расщепляет его и т. п. Однако, и в этом первая особенность голографических элементов, в основе данного преобразования лежит дифракция света на периодической или квази-периодической структуре, а не преломление или отражение, как в классических аналогах. В этом смысле голографические элементы можно назвать дифракционными оптическими элементами. Вторая особенность заключается в методе получения здесь, как правило не используют традиционной оптической технологии. Дифракционную структуру элемента формируют, фиксируя в высокоразрещающей фоточувствительной среде картину, возникающую при интерференции двух или нескольких когерентных световых волн.  [c.3]

Образование изображения в когерентном свете можно рассматривать как результат интерференции волн, дифрагировавших на объекте и сведенных с помощью линзовой системы в определенной плоскости — плоскости изображения. Тогда для формирования изображения синусоидальной одномерной решетки с помощью какой-либо линзовой системы необходимо иметь достаточно большую апертуру линзовой системы, чтобы дифрагировавшие пучки -Ь1 и —1-го порядков, попадая в апертуру, отклонялись соответствующим образом, и, интерферируя, давали изображение решетки. Зная угол дифракции, нетрудно показать, что размер апертуры оптической системы D = 2kvz, где z — расстояние от решетки до главной плоскости линзы. Таким образом, описание объекта с помощью пространственной частоты позволяет просто оценить, например, требуемую апертуру объектива.  [c.19]

Первая ступень получения голограммы — это фотографическая запись интерференционной картины, образованной объектной волной в зоне дифракции Френеля и опорной волной. Вторая ступень — восстановление записанного на голограмме изображения объекта путем освещения голограммы репликой опорной волны. Восстановленное таким образом изображение обладает трехмерными свойствами исходного объекта, а его качество зависит от угла между опорной волной и волной, продифрагировавшей на объекте. Габор работал с осевыми голограммами ), для которых этот угол равен нулю (т, е. опорная и дифрагирующая волны являются соосными). При восстановлении голограмма Габора формирует два сопряженных изображения объекта и когерентный фоновый шум, которые локализуются вблизи оптической оси. Это обстоятельство приводит к существенному ухудшению качества восстановленного изображения из-за интерференции между интересующим нас сфокусированным изображением объекта и фоновым шумом, а также между этим шумом и расфокусированным сопряженным изображением объекта. Лейт и Упатниекс в своих экспериментах ввели внеосевую опорную волну, представляющую собой несущую волну, модулированную информацией об объекте. Эти голограммы также создают при восстановлении два сопряженных изображения и фоновый шум однако два восстановленных изображения, каждое из которых может быть сфокусировано отдельно в своей плоскости, оказываются пространственно разделенными по углу друг от друга и от осевого фонового шума. Благодаря этому получаются восстановленные изображения хорошего качества, причем никакой интерференции с другими распределениями света, порождаемыми голографическим процессом, не происходит.  [c.154]


Теоретической основой анализа оптических явлений в когерентном свете являются положения классической оптики, достаточно полно изложенные в известных трудах [1,2], а также в последующих монографиях и учебниках (см., например, [3 - 6]). При этом особенно большую роль играют те разделы оптики, в которых рассматриваются процессы распространения, интерференции и дифракции излучения. В данной главе мы рассмотрим эти процессы и явления, используя подход, основанный на анализе решений приведенного волнового уравнения. Однако, прежде чем прист)шить к изложению основ теории дифракции и интерференции, уточним фундаментальное понятие когерентности, к которому нам придется постоянно апеллировать в процессе изложения материала з ебного пособия.  [c.10]

В 10.4 и 10.5 мы рассматривали интерференцию и дифракцию квазимонохроматического свста и ограничивались случаем времени задержки т, малом по сравнению с временем когерентности света. Мы показали, что при этом с хорошей точностью зависимость корреляционных функций от -с представлена только гармоническим членом, т. е. что  [c.489]

Огюст Жан Френель (1788-1827) — французский физик, член Парижской академии наук и Лондонского королевского общества. Окончил Политехническую школу и Школу мостов и дорог в Париже. Работал инженером по ремонту и строительству дорог в различных департаментах Франции, с 1817 г. — в Политехнической школе. Дополнил известный принцип Гюйгенса, введя представление о когерентности элементарных волн и их интерференции (принцип Гюйгенса—Френеля). Исходя из этого разработал теорию дифракции света. Выполнил классические опыты по интерференции света с бизеркалами и бипризмами. Исследовал интерференцию поляризованных лучей. Открыл в 1823 г. эллиптическую и круговую поляризации света. Установил законы отражения и преломления света на плоской поверхности раздела двух сред (формулы Френеля). Исследовал проблему о влиянии движения Земли на оптические явления. Высказал мысль о частичном увлечении эфира и вывел коэффициент увлечения света движущимися телами. Однако эти его выводы получили свое объяснение лишь в рамках теории относительности.  [c.22]


Смотреть страницы где упоминается термин Интерференция и дифракция света Интерференция и когерентность : [c.499]    [c.355]    [c.4]    [c.659]    [c.127]    [c.377]    [c.243]    [c.488]    [c.140]   
Смотреть главы в:

Основы оптики  -> Интерференция и дифракция света Интерференция и когерентность



ПОИСК



Дифракция

Дифракция когерентная

Дифракция света

ИНТЕРФЕРЕНЦИЯ СВЕТА Когерентность

Интерференция

Интерференция света

Когерентная (-ое)

Когерентность

Когерентность света

Когерентный свет

Свет Интерференция



© 2025 Mash-xxl.info Реклама на сайте