Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Квантовое ядерное

Чтобы произошла ядерная реакция, два атомных ядра должны хоть на мгновение сблизиться до расстояний порядка 10 см. Кулоновское отталкивание между ядрами удерживает их на значительно больших расстояниях друг от друга, за исключением тех случаев, когда Г > 10 К для протонов и Т > 10 К для ядер атомов гелия. Пользуясь квантовой теорией, можно произвести количественный расчет этих температур зажигания термоядерной реакции.  [c.305]


Рассмотрим систему, состоящую из двух нуклонов, из протона и нейтрона (дейтрон), и выясним, какие квантовые числа характеризуют ее состояния. В случае взаимодействия двух нуклонов в выражении ядерного потенциала, даваемого мезонной теорией для статического взаимодействия ( 21), будут существенными лишь первые два слагаемых, соответствующие центральным силам , а третье слагаемое, выражающее тензорные силы, в том числе и спин-орбитальное взаимодействие, мало. Ограничиваясь случаем центральных сил (пренебрегая тензорными силами), рассмотрим возможные состояния системы из двух нуклонов. При этом величина спина системы является интегралом движения, и состояние такой системы можно характеризовать спиновым квантовым числом S системы.  [c.113]

Применим методы квантовой механики к решению задачи о дейтроне, считая для простоты исследования,, что ядерные силы, действующие между пир, имеют центральный характер, т. е. потенциальная энергия взаимодействия V (г) зависит от расстояния между нуклонами. Уравнение Шредингера для системы р—п запишется  [c.154]

Во всех рассмотренных случаях считается, что координатная часть энергии взаимодействия V (г) зависит только от расстояния между взаимодействующими нуклонами, т. е. обменные силы являются центральными и не зависят от относительной скорости нуклонов. Такие обменные центральные силы не приводят к состояниям, являющимся суперпозицией состояний с разными значениями орбитального квантового числа I, и не могут привести к асимметрии поля ядерных сил и объяснить возникновение квадру-польного электрического момента дейтрона. Для объяснения возникновения квадрупольного электрического момента вводятся дополнительно тензорные силы.  [c.160]

Основные положения обобщенной модели ядра сводятся к следующему. Как и в случае модели оболочек, здесь также принимается, что нуклоны в ядре движутся в некотором среднем самосогласованном поле, почти не зависящем от положения каждого нуклона, и образуют замкнутые нейтронные и протонные оболочки. Это самосогласованное поле резко меняется у поверхности. Можно сказать, что ядро состоит из внутренней более устойчивой области— ядерного остова , образованного нуклонами, входящими в состав замкнутых оболочек, и внешних нуклонов, которые движутся в поле этого остова. Остов ядра , образованный заполненными оболочками, имеет сферическую форму. Внешние нуклоны, не входящие в состав замкнутых оболочек, могут создавать у поверхности ядра неоднородности (флуктуации) потенциала самосогласованного поля, что приводит к несферическому характеру поля. Движение этих внешних нуклонов вызывает деформацию остова ядра , т. е. оболочечной структуры, и сферически симметричная поверхность ядра превращается в эллипсоидальную. В свою очередь деформированный остов ядра еще более усиливает отклонение поля от сферической структуры. Величина деформации поверхности зависит от числа внешних деформирующих нуклонов и от их квантовых состояний. Деформация ядерной поверхности является коллективной формой движения нуклонов, и она может приводить к колебаниям вытянутости по поверхности ядра или к появлению различных вращений.  [c.194]


Подобное мы имеем и в процессе р-распада. В самом акте р-рас-пада рождаются электрон (и антинейтрино) или позитрон (и нейтрино) в результате особого (слабого) взаимодействия между нуклонами ядра. Иначе говоря, р-распад следует рассматривать как квантовый переход ядерного нуклона из состояния с одним значе-  [c.236]

Квантовая механика позволяет решать различные задачи атомной и ядерной физики. Однако используемые в ней методы довольно сложны. Существует более простой метод решения некоторых из этих задач, основанный на рассмотрении векторной модели атома. В этой модели используются простые, наглядные представления теории Бора с учетом поправок, вносимых квантовой механикой. Ввиду того что векторная модель атома позволяет сравнительно легко проанализировать вопрос об определении спина и магнитного момента ядер, остановимся подробнее на ее описании,  [c.62]

Изучение ядерных реакций сводится к измерению дифференциального сечения в функции от энергии и других параметров налетающей частицы и определению угловых и энергетических распределений продуктов реакций, а также их внутреннего квантового состояния (энергии возбуждения, спина, четности и изо-топического спина).  [c.282]

О, 1,2, вплоть до I а/к. Если же энергия нейтронов не слишком велика и Х> а, j o для I остается возможным только единственное значение / = 0. В соответствии с квантовой механикой в этом случае угловое распределение рассеянных нейтронов должно быть сферически симметричным. Очевидно, что может быть сделано и обратное заключение. Если опыт показывает сферическую симметрию углового распределения рассеянных нейтронов в с. ц. и., то это означает, что рассеяние происходит с 1 = 0 (т. е. уже при I = 1 параметр удара qi > а). Отсюда и может быть получена оценка радиуса действия ядерных сил.  [c.501]

Заметим, что сохранение Т . для взаимодействий с участием К-мезо-нов и гиперонов уже не вытекает из законов сохранения электрического и ядерного зарядов (см. 80), а должно быть постулировано вместе с сохранением Т в виде гипотезы об изотопической инвариантности ядерных сил. С точки зрения квантовой механики сохранение Т и Т,- является следствием инвариантности гамильтониана по отношению к вращению в изотропном пространстве, благодаря которой он коммутирует с операторами Р и Т .  [c.516]

Существует другой метод рассмотрения проблемы введение мезонного поля и квантов этого поля — мезонов, которые переносят ядерное взаимодействие. Такой метод рассмотрения аналогичен квантовой электродинамике, в которой вводится электромагнитное поле с фотонами в качестве его квантов.  [c.548]

Обычно каждый резонанс характеризуется несколькими способами (путями, модами) распада. Чем больше эффективная масса резонанса, тем больше различных способов для его распада или, как говорят, тем больше у него открытых каналов (сравните с аналогичным термином для ядерных реакций). Каждый из них характеризуется некоторой комбинацией распад-ных частиц, которая имеет тот же набор квантовых чисел и то же значение эффективной массы, что и резонанс. Обычные частицы (не резонансы) стабильны относительно сильных взаимодействий и распадаются либо слабым, либо электромагнитным способом, а некоторые из них р, e,y,vv их античастицы) стабильны относительно всех видов взаимодействия.  [c.662]

Основная идея квантовой электродинамики — представление о передаче взаимодействия при помощи квантов — может быть перенесена и на другие виды взаимодействия и, в частности, на ядерное взаимодействие. Впервые это отметил в 1934 г. советский физик И. Е. Тамм. Идея Тамма придавала особенно наглядный смысл таким свойствам ядерного взаимодействия, как обменный характер (см. 6, п. 3), для объяснения которого надо предполагать, что протон и нейтрон в процессе взаимодействия обмениваются своими зарядами, и вытекающее из него насыщение. Очень естественно, казалось, считать, что механизм  [c.9]

Магнитный резонанс — это избирательное (резонансное) поглощение энергии переменного электромагнитного поля электронной или ядерной подсистемами вещества, находящегося в постоянном магнитном поле. Поглощение связано с квантовыми переходами между дискретными энергетическими уровнями, возникающими в этих подсистемах под действием постоянного магнитного поля. Ниже мы кратко рассмотрим два типа магнитных резонансов — электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).  [c.351]


Ядерный магнитный резонанс. Он представляет собой избирательное поглощение энергии электромагнитного поля, связанное с квантовыми переходами в ядерной подсистеме вещества, находящейся в постоянном магнитном поле. Атомное ядро с отличным от нуля моментом I, помещенное в магнитное поле На, также испытывает пространственное квантование. Каждый энергетический уровень расщепляется на 2/+1 подуровня с энергиями  [c.352]

Ее тема дает редкую возможность, не отвлекаясь на частности, сколь бы важны они ни были, с единых позиций подойти к рассмотрению практически всех основных разделов курса физики. Фундаментальные постоянные как бы связывают ее воедино, являясь неотъемлемыми характеристическими параметрами всех важнейших физических теорий—тяготения и теории относительности, атомной и ядерной физики, квантовой механики и космологии. Понимание существа проблемы в целом немыслимо без синтеза достижений всей физики и ее современных единых теорий взаимодействий, физики элементарных частиц, астрофизики. При таком анализе возникают имеющие самостоятельное значение вопросы общенаучного, методологического, мировоззренческого и философского характера.  [c.5]

Пусть имеется система элементарных магнитов (например, электронные, атомные или ядерные магнитные моменты) во внешнем магнитном поле Н. Согласно квантовой механике, положение этих элементарных магнитов в поле Н квантуется, т. е. угол между направлениями магнитного момента и напряженности Я поля может принимать только определенные значения. В случае спиновых магнитных моментов этот угол имеет только два значения О и 180°. Оба эти положения спина являются одинаково устойчивыми, хотя для магнитной стрелки компаса  [c.138]

Физика твердого тела в настоящее время — это обширная область науки, тесно связанная с другими разделами физики и смежными дисциплинами. В недрах физики твердого тела и на ее стыках с химией, биологией, геологией, механикой, математикой, атомной и ядерной физикой, радиофизикой, физикой космоса, техникой возникли и стремительно развиваются химия твердого тела, молекулярная биология, радиационная физика твердого тела, твердотельная электроника, космическое материаловедение, физика полупроводников, физическое материаловедение, физика и техника низких температур, физика магнитных пленок и т. д. Эти области столь близко соприкасаются с физикой твердого тела, что знание основ последней необходимо каждому специалисту, активно работающему во всех перечисленных направлениях. Следует добавить, что синтез физики твердого тела и теоретической физики привел к созданию теории твердого тела, опирающейся на современные достижения квантовой механики, статистической физики, теории поля и широко использующей быстродействующие ЭВМ для проведения многочисленных трудоемких расчетов и численного моделирования различных явлений в твердых телах. Многие достижения физики твердого тела нашли непосредственный выход в практику. Результатом оказалось создание новых типов материалов с уникальными характеристиками и даже целых отраслей техники.  [c.5]

Рассматриваются опыты Резерфорда, приведшие к установлению ядерной модели атома. Излагается элементарная квантовая теория Бора строения и излучения атома водорода и ее элементарное обобщение на эллиптические орбиты с учетом конечной массы ядра.  [c.81]

Мы решили написать такую книгу, которую можно было бы понять, не зная теоретической физики (т. е. электродинамики и квантовой механики), и которая содержала бы всю современную ядерную физику в самом широком смысле этого слова, т. е. физику всех явлений, происходяш,их с суш,ественным участием атомных ядер и элементарных частиц.  [c.6]

Мы не предполагаем у читателя предварительного знания теории относительности и квантовой механики. Но без релятивистских и особенно без квантовых представлений ядерную физику понять нельзя. Поэтому мы в первой главе изложили без выводов самые необходимые понятия и соотношения этих двух теорий. Сами по себе эти соотношения, конечно, неубедительны и голословны. Но если, прочтя книгу, читатель придет к выводу, что без релятивистских и квантовых представлений в явлениях микромира не разобраться, то это будет означать, что мы выполнили одну из главных своих задач.  [c.6]

Из-за статистического характера квантовых процессов микромира наблюдения в ядерной физике всегда носят статистический характер. Зарегистрировав один распад нестабильной частицы, мы ничего не узнаем о том, какое время проживет Другая такая же частица. И только пронаблюдав 10 ООО распадов, мы определим среднее время жизни таких частиц с точностью до 1%. Это не значит, однако, что в ядерной физике нельзя делать очень точных измерений. Более того, в гл. VI, 6 мы узнаем, что одно из самых точных измерений человек сделал именно в физике атомного ядра.  [c.29]

Для экспериментального определения спинов атомных ядер был предложен целый ряд методов. Более ранние из них связаны с изучением сверхтонкой структуры оптических спектров, более современные основаны на изучении поведения ядер в магнитном поле с помощью радиоспектроскопической техники. Все эти методы базируются на связи спина с магнитным моментом и будут изложены в следующем параграфе. Спины короткоживущих изотопов и ядер в возбужденных состояниях определяются методами ядерной спектроскопии (см., например, гл. VI, 6, п. 5), а также из ядерных реакций (см., например, гл. IV, 10) на основе закона сохранения момента количества движения, справедливого не только в классической, но и в квантовой теории.  [c.45]

Проследим теперь качественно, как идет заполнение ядерных оболочек. Руководящими здесь являются следующие соображения. Во-первых, энергия уровня резко, резче, чем в атоме, растет с увеличением главного квантового числа п. Этот резкий рост обусловлен тем, что самосогласованный потенциал быстро спадает с расстоянием, а среднее расстояние нуклона от центра ядра растет с ростом п. Во-вторых, энергия уровня падает с ростом I за счет  [c.95]


В модели ядерных оболочек часто используется понятие дырок Дыркой в ядер ной оболочке называется система нуклонов одного сорта в этой оболочке, число которых на единицу меньше соответствующего магического. Например, вместо того чтобы говорить, что в ядре имеется семь протонов, можно сказать, что в этом ядре есть одна протонная дырка в р-оболочке. Аналогично можно сказать, что в ядре имеются две протонные дырки в р-оболочке, и так далее. В квантовой теории доказывается, что дырку в хорошем приближении можно считать частицей, масса и заряд которой противоположны по знаку массе и заряду соответствующего нуклона. Введение дырок полезно тем, что оно дает возможность значительно уменьшить число рассматриваемых частиц при расчетах структуры ядер, близких к магическим снизу .  [c.100]

Самим физикам изучение ядерных реакций необходимо для получения информации о свойствах новых изотопов, новых частиц, возбужденных состояний ядер и элементарных частиц. Не следует забывать, что в микромире из-за наличия квантовых закономерностей на частицу или ядро нельзя посмотреть . Поэтому основным  [c.113]

Для протекания реакций при низких энергиях большое значение имеет закон сохранения момента количества движения. Существенность этого закона коренится в том, что орбитальный момент относительного движения двух частиц может принимать только дискретные значения, равные (в единицах h) I = О, 1, 2,. .. Эта дискретность приводит к тому, что при низких энергиях и при ограниченном радиусе действия сил (а ограниченность радиуса действия ядерных сил следует уже из опытов Резерфорда) (см. гл. И, 1) реакция возможна лишь при значениях I, не превышающих некоторого небольшого числа. Оценку этого предельного числа проще всего получить из следующего полуклассического рассмотрения в духе квантовых орбит Бора (рис. 4.1). Момент hi налетающей на ядро частицы равен рЬ, где р — импульс частицы, а Ь — ее прицельный параметр, т. е. наименьшее расстояние, на которое приблизилась бы к частице-мишени налетающая частица, двигаясь по прямой. Реакция может произойти лишь в том случае, если Ь не  [c.120]

Существуют два типа водородных молекул ортоводород, у которого спины двух протонов параллельны, и параводород, имеющий противоположно направленные, или антипараллель-ные спины. В случае ортоводорода момент ядерного спина имеет значение 1 и может поэтому относительно вектора углового момента всей молекулы принимать любое из трех значений 1, О или —I. В случае параводорода момент ядерного спина равен нулю, и потому только это единственное значение возможно для спина всей молекулы. Параводород соответствует состоянию с самой низкой энергией, его вращательное квантовое число нуль, т. е. наименьщее из всех четных квантовых чисел. Ортоводород характеризуется нечетными квантовыми числами. Поэтому при низких температурах существование параводорода предпочтительнее и, действительно, при понижении температуры доля параводорода растет. При высоких температурах доли орто- и параводорода стремятся к значениям, связанным с относительными вероятностями спиновых состояний, 3 1 соответственно. Примерные соотнощения орто- и параводорода при разных температурах показаны в табл. 4.2177].  [c.152]

Итак, экспериментальные исследования Резерф< )рда по рассеянию а-частиц при их прохождении через тонкие металлические листки показали, что основная масса атома и положительный электрический заряд сосредоточены в небольшой (lO — 10 м) центральной области атома, именуемой атомным ядром. В нейтральном атоме вокруг ядра обращается Z электронов. Такая мОт дель получила название ядерной модели атома. Ядерная модель атома в сочетании с квантовыми закономерностями объясняет возникновение и структуру атомных спектров процессы возбуждения и ионизации атомов, свойства молекул, свойства твердых тел (металлов) и т. д.  [c.81]

М. Гепперт-Майер указала другой выход из затруднения. По ее мнению, все уровни, которым соответствуют квантовые числа I -ф О, испытывают расщепление на два подуровня из-за наличия спин-орбитальной связи, т. е. из-за наличия зависимости ядерного взаимодействия от взаимной ориентации спина и орбитального момента движения нуклонов.  [c.186]

Закон сохранения ядерного заряда (барионного числа) в том, и состоит, что сумма барионных чисел до и после процесса одинакова. Возникает вопрос можно ли экстраполировать этот закон на неисследованную область больших энергий, нельзя ли там ожидать несохранения Я- Б. Зельдович указывает, что здесь на помощь приходит квантовая механика с идеями подбарьерного перехода и принципа неопределенности энергии если бы ядерный заряд не сохранялся при каких-то сверхбольших энергиях, то с малой вероятностью, подбарьерно, он не сохранялся бы и в обычных ядрах. Стабильность атомных ядер косвенно доказывает универсальность закона сохранения барионного (ядерного) заряда.  [c.354]

Мезонные теории ядерных сил строятся по аналогии с квантовой электродинамикой. Как известно, в квантовой электродинамике электромагнитное поле рассматривается совместно со связанными с ним частицами — фотонами. Оно как бы состоит из фотонов, которые являются его квантами. Энергия поля равна сумме энергии квантов. Фотоны возникают (исчезают) при испускании (поглощении) электромагнитного излучения (например,. света). Источником фотонов является электрический заряд. Взаимодействие двух зарядов сводится к испусканик> фотона одним зарядом и поглощению его другим. При такой постановке вопроса становится возможным рассмотрение новых, явлений, относящихся к классу взаимодействий излучающих систем с собственным полем излучения. Этим путем удается,, например, объяснить аномальный магнитный момент электрона и мюона (см. 10, п. 3 И, п. 6), лэмбовский сдвиг уровней в тонкой структуре атома водорода и ряд других тонких эффектов.  [c.9]

Введение в определение важнейшего физического понятия столь расплывчатого термина, как ее современные теории , вряд ли можно признать правильным. XX век подарил нам множество современных теорий — общая и специальная теории относительности, квантовая механика, атомная и ядерная физика, физика элементарных частиц и т.д. Значительно расширились границы наблюдаемой части Вселегшой , что связано с громадными достижениями техники физического эксперимента. Определение кшровых постоянных [22] опирается в первую очередь на масштабный, пространственный фактор. Оно неявно предполагает постоянное существование наблюдателя . Современные теории эволюции Вселенной включают в рассмотрение временной фактор и уверенно оперируют с такими моментами ее развития, когда все вещество Вселешюй было сжато в сгусток сверхплотной раскаленной плазмы, состоящей из фотонов, квар-34  [c.34]

Развитие квантовой теории и физики элементарных частиц позволяют сегодня предположить новые интерпретации эйнштейновского заряда q. Так, Г.-Ю. Тредер склонен видеть в нем заряд, отвечающий сильным или ядерным взаимодействиям, исходя из формального равенства единице значения q l(h ) и безразмерной константы сильного взаимодействия. Эту трактовку вряд ли можно признать убедительной, поскольку электроны не входят в состав ядер и не принимают участия в сильном взаимодействии, в связи с чем нами предлагается новая интерпретация заряда q, основаш1 1я на концепции физического вакуума.  [c.110]

Атомная физика —раздел физики, в котором изучают строение и свойства атома и элементарные процессы на атомном уровне. Для атомной физики наиболее характерны расстошгая 10 °м (т. е. порялка размеров атома) и энергии элементарных процессов порядка нескольких электрон-вольт (для ядерной физики соответствующие величины порядка 10" м и нескольких мегаэлектрон-вольт). Строение вещества и элементарные процессы на атомном уровне обусловлены электромапштными взаимодействиями. Теоретическая основа атомной физики — квантовая механика.  [c.219]


При переходе от атома к ядру мы прежде всего сталкиваемся с трудностью, связанной с недостаточностью наших знаний о силах, действующих между нуклонами. На электроны в атоме действуют электромагнитные силы, количественная квантовая теория которых хорошо разработана и прекрасно согласуется с экспериментальными данными. Количественная же теория взаимодействия нуклонов до их пор не построена. Поэтому ядерные силы взаимодейстБИя  [c.79]

К тому же и на этом пути возникает дополнительная трудность, в какой-то мере случайного характера, обязанная своим происхождением свойству короткодействия ядерных сил. В теории атома, даже не имея квантовой электродинамики, мы могли бы довольно точно определить потенциал взаимодействия двух зарядов по данным о задаче двух тел, изучая систему энергетических уровней атома водорода. Как известно, атом водорода имеет богатую систему уровней, по которой можно восстановить многие, даже очень тонкие детали электромагнитного взаимодействия. В противоположность этому получение явного вида действующих между нуклонами ядерных сил по экспериментальным данным о задаче двух тел является значительно более тяжелой задачей. Объясняется это тем, что в системе нуклон — нуклон имеется всего лишь одно связанное состояние — дейтрон, а одна цифра — это очень небольшая информация о виде сил взаимодействия. Можно, конечно, воспользоваться экспериментальными данными о нуклон-нуклонном рассеянии, но данные по рассеянию всегда несравненно менее точны, чем данные об экспериментальных уровнях. Кроме того, даже по полной и точной совокупности экспериментальных данных о рассеянии и связанных состояниях точный вид сил может быть установлен однозначно лишь тогда, когда эти силы не зависят от скоростей, что для ядерных сил не имеет места.  [c.80]

Модель оболочек со спариванием. В этом варианте модели оболочек остаточное взаимодействие учитывается введением сил спаривания, действующих только между нуклонами одного сорта, у которых квантовые числа п, I, / совпадают, а проекции т./ равны по абсолютной величине и противоположны по знаку. (Математический аппарат учета сил спаривания был создан Н. Н. Боголюбовым.) В этой модели хорошо объясняются (уже не феноменологическим постулированием результата, а расчетйым путем) спины и четности основных и многих низших возбужденных состояний почти всех ядер. Замечательным успехом модели со спариванием является объяснение частичной сверхтекучести ядерной материи, т. е. получение правильных значений моментов инерции ядер (см. 3, п. 3).  [c.111]


Смотреть страницы где упоминается термин Квантовое ядерное : [c.257]    [c.213]    [c.41]    [c.193]    [c.222]    [c.228]    [c.231]    [c.237]    [c.1055]    [c.85]    [c.44]   
Ядра, частицы, ядерные реакторы (1989) -- [ c.119 ]



ПОИСК



Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте