Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрон-электронное взаимодействие и магнитная структура

ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРОНОВ И МАГНИТНАЯ СТРУКТУРА  [c.286]

Взаимодействие электронов и магнитная структура 289  [c.289]

Сложность картины этого аномального эффекта Зеемана не случайным образом связана со сложным характером линии в отсутствие внешнего магнитного поля. Общая причина лежит в том, что электрон, кроме электрического заряда, обладает еще и определенным магнитным моментом. Взаимодействие этого магнитного момента с магнитным полем, господствующим внутри атома, приводит к сложной структуре спектральных линий, а взаимодействие его с внеш-  [c.627]


Уровни сверхтонкой структуры — это очень тесно расположенные уровни энергии атомов и молекул, связанные с наличием у атомных ядер собственных моментов (ядерных спинов). Разности энергий этих уровней, появление которых обусловлено взаимодействием магнитных и электрических моментов ядер с электронными оболочками атомов и молекул, очень малы и составляют от десятимиллионных до стотысячных долей электрон-вольта. Соответствующие переходы непосредственно изучаются радиоспектроскопическими методами ядерного резонанса (магнитного и квадрупольного).  [c.228]

Старейшим методом определения спинов и магнитных моментов ядер является изучение сверхтонкой структуры оптических спектров атомов. Явление сверхтонкой структуры состоит в том, что магнитный момент ядра, взаимодействуя с магнитным моментом электронной оболочки, расщепляет электронные уровни за счет того, что энергия взаимодействия этих магнитных моментов зависит от их взаимной ориентации. Расщепление же электронных уровней приводит к тому, что оказывается расщепленной на несколько линий и спектральная частота соответствующего атомного электромагнитного излучения. Выясним закономерности этого расщепления.  [c.48]

Явление магнитострикции. имеет место также и в аморфных ферромагнетиках. Причиной магнитострикции является дипольное взаимодействие между магнитными моментами электронов, которое зависит от межатомного расстояния и в аморфных структурах определяется неупорядоченными атомными конфигурациями. Магнитоупругий эффект в аморфных ферромагнетиках является причиной появления магнитной анизотропии и соответствующей ей коэрцитивной силы.  [c.139]

Характер магнитных свойств во второй группе сплавов (15—60% Мп) определяется как изменением количества пар Fe—Мп, так и характером электронного взаимодействия и электронной структуры. Парадоксальный факт повышения температуры Нееля при одновременном снижении внутреннего поля на ядрах железа с увеличением содержания марганца от 30 до 60% может быть объяснен увеличением атомных пар Fe—Мп, энергия обменного взаимо-  [c.81]

Сверхтонкая структура и эффект изотопического сдвига также часто могут приводить к уширению спектральной линии. Такие эффекты вызываются электрическим и магнитным взаимодействиями ядер с окружающими их электронными оболочками. В случае магнитно-дипольного взаимодействия вырождение одиночных энергетических уровней снимается, уровень расщепляется на ряд уровней, общее число которых зависит от суммарного момента количества движения системы. Если это расщепление меньше допплеровской ширины или такого же порядка, то структура остается неразрешенной и излучение системы уровней выглядит как симметрично уширенная линия. Кроме того, электростатическое взаимодействие зависит от радиуса заряженного ядра. Так как этот параметр различен для каждого изотопа одного и того же элемента, испускаемое излучение будет представлять собой комбинацию излучений каждого изотопа. Излучение будет немного сдвинуто по частоте и даст уширенную неразрешенную линию. Уширение, типичное для таких эффектов, составляет величину порядка 0,1 см . Эффекты изотопического  [c.323]


Если мы приложим очень большие магнитные поля, намагниченность парамагнетика достигнет насыщения, значение которого равно N i, т. е. полной сумме всех магнитных моментов носителей. Обычно насыщение можно наблюдать только при очень низких температурах. В системе магнитных атомов, далеко отстоящих друг от друга, парамагнитная восприимчивость может служить мерой магнитных моментов отдельных носителей и давать информацию о магнитных свойствах атомов, составляющих систему, Однако в твердых телах, содержащих много парамагнитных атомов или ионов, обычно имеют место взаимодействия магнитных электронов с магнитными или электростатическими полями соседних атомов. Эти воздействия нарушают идеальное поведение магнитных носителей, и хотя в твердых телах наблюдаются магнитные эффекты той же природы, что и в системе рассредоточенных магнитных атомов, эти эффекты уже нельзя использовать для получения простой информации о числе магнитных электронов на атом. Таким образом, парамагнитная восприимчивость, давая в общем полезную информацию о веществе, непосредственно не связана с факторами, важными с точки зрения металлургии и определяющими структуру материала. Однако изломы, наблюдающиеся на кривой зависимости парамагнитной восприимчивости от состава, можно использовать при изучении металлов и сплавов.  [c.280]

П4.1.4. Спин ядра и его магнитный момент. Явление сверхтонкой структуры атомных спектров, когда происходит расщепление спектральных линий, можно объяснить наличием у атомных ядер собственного момента количества движения (спина) и магнитного момента (В. Паули, 1924 г.). Такое расщепление происходит в результате взаимодействия магнитного момента ядра с магнитным полем электронной атомной оболочки при разных ориентациях спина ядра оно будет различно.  [c.492]

Изменяя расположение плотности электронных облаков ионов и молекул воды, магнитные поля изменяют структуру водно-дисперсных систем, энергию взаимодействия ионов с молекулами воды, окружающими ионы, ближнюю гидратацию и поляризацию молекул в прилегающих к ионам слоях (дальнюю гидратацию), т. е. изменяет в той или иной степени структуру водно-дисперсной системы в целом.  [c.44]

Для объяснения тонкой структуры Гоудсмит и Юленбек в 1925 г. высказали гипотезу, согласно которой электрон надо представлять себе в некотором смысле похожим на заряженный волчок, вращающийся вокруг собственной оси. Благодаря этому вращению электрон будет обладать собственным моментом количества движения (спином) и магнитным моментом. Если предположить, что проекция спина может принимать только два значения, то тонкую структуру оптических линий можно объяснить как результат взаимодействия магнитного поля, создаваемого орбитальным движением электронов, с магнитным моментом, обусловленным наличием спина. Это взаимодействие несколько различно при разных направлениях спина, благодаря чему происходит расщепление терма на два близких подтерма. При этом количественное согласие с опытом получается в том случае, если  [c.59]

Сверхтонкая структура. Если ядро парамагнитного иона обладает снином /, то имеет место небольшое расщеиленне основного уровня (эффект сверхтонкого расщепления). Оно состоит из двух частей, обусловленных 1) магнитным взаимодействием между магнитными моментами ядра и электронов и 2) электрическим взаимодействием между электрическим квадру-иольным моментом ядра и градиентом (в месте расположения ядра) электрического поля, создаваемого электронами. Первая из этих составляющих имеет порядок 10 eлГ , вторая еще меньше.  [c.465]

При исследовании с помощью спектральных приборов высокой разрешающей силы линии большинства элементов обнаруживают сложную структуру, значительно более узкую, чем мульти-плетная (тонкая) структура линий. Ее возникновение связано с взаимодействием магнитных моментов ядер с электронной оболочкой, приводящим к сверхтонкой структуре уровней и с изотопическим сдвигом уровней.  [c.66]


Высокое энергетическое разрешение ЯГР Го/ о 10 -г-10 (Го=й/т)—естественная ширина ядер-ного уровня т —среднее время жизни возбужденного ядра Ea=Ee—Eg — энергия у-перехода между возбужденным е й основным g состояниями ядра) позволяет не только измерять очень малые изменения энергии (порядка 10 ° эВ), но и наблюдать сверхтонкую структуру ядерных уровней, вызванную электрическими и магнитными электронно-ядерными взаимодействиями.  [c.1054]

В первую очередь сверхтонкая структура спектральных линий обусловливается наличием у ядер магнитного момента связанного с механическим моментом Магнитный характер взаимодействия между ядром и электронной оболочкой атома позволяет перенести на сверхтонкую структуру все рассуждения, которые применялись для объяснения обычной мультиплетной структуры. Вместе с тем, тот факт, что сверхтонкая структура, грубо говоря, в тысячу раз уже обычной мультиплетной структуры, заставляет предположить. что и магнитный момент ядер составляет приблизительно Viooo от магнетона Бора [Хд. Сходство сверхтонкой структуры с мультиплетной позволяет, прежде всего, построить векторную схему, которая дает возможность определять число компонент.- Если до сих пор мы характеризовали состояние атома результирующим моментом то при наличии ядерного  [c.521]

В большинстве РЗЛ металлов существуют перводич., магнитные атомные структуры, Период к-рых довольно часто является несоизмеримым с периодом кристал-лнч. решётки. Обменное взаимодействие между РЗЛ ионами является косвенным и осуществляется через электроны проводимости (см. РКП И-обменное взаимодействие). Волновой вектор периодич. магн. структур определяется топологии, особенностями фермиг поверхности и близок к диаметрам её экстремальных сечений. Магн. структуры и магнитные фазовые переходы зависят также от специфики косвенного обменного взаимодействия и влияния магн. анизотропии и магнитоупругого взаимодействия. В Се обнаружено антиферро-магн. упорядочение ниже Нееля точки Гдг = 12,5 К.  [c.306]

Развитие физики атома, атомного ядра и элементарных частиц потребовало введения ряда новых Ф. ф. к. Ридбер-га постоянной для бесконечной массы атомного ядра R , определяющей атомные спектры танкой структуры по-сто.чнной а, характеризующей эффекты квантовой электродинамики и тонкую структуру атомных спектров магнитных моментов электрона и протона и р константы Ферми Ср и угла ВайнберГа 0w, характеризующих эффекты слабого взаимодействия, массы промежуточных Z -и W-бозонов mz и являющихся переносчиками слабого взаимодействия, и т. д. Развитие физики сильных взаимодействий на основе кварковой модели составных адронов и квантовой хромодинамики, несомненно, приведёт к новым Ф. ф. к. С др. стороны, имеется тенденция к построению единой теории всех фундам. взаимодействий (эл.-магн., слабого, сильного и гравитационного, см. Великое объединение), что позволило бы уменьшить число независимых Ф. ф. к. Так, уже создана единая теория электрослабых взаимодействий (т. н. стандартная модель Вайнберга—Салама — 1лэшоу), в результате чего константа Ферми Ср перестаёт быть независимой и выражается через константы /г, а, 9w и mw  [c.381]

Одни авторы [2] связывают появление тетрагональности с особенностями зонной структуры переходных металлов и возможностью образования дырок среди коллективизированных электронов. Зонная модель ферро- и антиферромагнетизма предполагает, что в фермиевском газе свободных электронов в определенных условиях устанавливается обменное взаимодействие, способствующее самопроизвольному намагничиванию. В Зс1-металлах нахождение одной дырки на жу-орбитали приводит к формированию связывающей dxy-зоны, а образующиеся две дырки попадают на dyz и с гж-орбитали, что ведет к кооперативному искажению ГЦК-решетки до тетрагональной симметрии. Одновременно возникает двухподрешеточная структура и появляется антиферромагнитная корреляция. В первом случае, с/а>1 и наблюдается антиферромагнитное взаимодействие в плоскостях (001) во втором случае, ja< и— взаимодействие между плоскостями (001).Спо-нижением температуры испытания и уменьшением содержания железа роль дырочной проводимости увеличивается [30]. Зонная модель со спонтанным моментом коллективизированных электронов наиболее полно объясняет магнитные свойства Зд-металлов с высокой степенью перекрытия недостроенных оболочек (хром, марганец). Однако эта модель не объясняет разделения магнитных и кристаллографических превращений, а также существования анти- ферромагнитного порядка только в ГЦК-кристаллах [2].  [c.77]

И. Н. Богачевым с сотрудниками был выполнен ряд работ, в которых показана связь механических свойств с антиферромагнитным упорядочением в железомарганцевых сплавах [1, 118]. Исходя из положения, что магнетизм металлов и сплавов обусловлен взаимодействием атомов на электронном уровне, которое определяет все свойства материалов, следует ожидать влияние магнитных превращений как на механические свойства, так и на фазовые перестройки [190]. Так, склонность к хрупкому разрушению при температурах около — 100°С, обнаруженную в однофазных 7-сплавах (37,75% Мп), авторы работы [190] объясняют изменением магнитной структуры антиферромагнетика, аналогично тому, как это происходит в анти-ферромагиитном хроме и редкоземельных элементах, т. е. могут возникать многослойные атомные упаковки с низкой симметрией [118]. Выдвинутое предположение о вкладе магнитной составляющей в общее сопротивление пластической деформации подтверждается значительным изменением механических свойств однофазных (7) и двухфазных (е + 7)-сплавов в интервале температур Tn и Наблюдаемое при этом снижение прочности и пластичности предшествует самым начальным стадиям фазовой перестройки, но совпадает с исчезновением ближнего магнитного порядка, который происходит на 30—50° ниже Tn-На этом основании авторы делают вывод о прямой взаимосвязи кристаллической структуры и механических свойств с антиферромагнитным упорядочением [1, 125].  [c.243]


Ядро атома цезия, обладающее магнитным моментом (спин 7 = 7/2), взаимодействует с магнитным моментом валентного электрона (спин /=1/2), Это и приводит к расщеплению основного электронного уровня атома на ряд подуровней, т. е. к образованию так называемой сверхтонкой структуры. Частоты, соответствующие переходам между уровнями сверхтонкой структуры, попадают в диапазон радиочастот. Очень важно, что энергия перехода между уровнями сверхтонкой структуры, а стало быть и соответствующая частота, очень мало зависят от внещних магнитных полей.  [c.55]

Таким образом, метод ЭПР может быть успешно использован только при наличии магнитных ядер, взаимодействующих с неспаренным электроном. О присутствии атомов, не имеющих изотопов с ядерным спином, по спектрам ЭПР удается судить лишь в том случае, когда они являются основными в структуре частицы и косвенно влияют на сверхтонкое взаимодействие имеющихся магнитных ядер. В некоторых случаях успешно применяют изотопное замещение, например для кислорода, имеющего изотоп О с ядерным спином. В спектрах ЭПР частиц, содержащих атом углерода, часто можно на-. блюдать взаимодействие с изотопом, природное содержание которого составляет 1%.  [c.105]

С.-с. в. приводит к перераспределению энергии внутри спиновой системы и является, т. о., одним из факторов, определяющих релаксацуюнные процессы в магнитны.х веществах (см. Релаксация магнитная). Взаимодействие между спинами электронов играет существенную роль в уширении резонансной линии в ферромагнитных диэлектриках с идеальной кристаллич. структурой и в иарамагнитных веществах. Взаимодействие между спинами электронов и ядер приводит к сверхтонкому расщеплению линий электронного парамагнитного резонанса и изменению лар-моровской частоты ядерных спинов (сдвиг Найта). С.-с. в. между ядрами — один из основных механизмов релаксации нри ядерном магнитном резонансе.  [c.50]

МАГНИТНОЕ РАССЕЯНИЕ НЕЙТРОНОВ — рассеяние, обусловленное взаимодействие.м магнитного момента нейтрона с магнитными моментами электронных оболочек атомов среды. Проявляется прп прохождении медленных нейтронов в пара-, ферро-, tiieppu- и аптнферромагнитпых веществах и широко используется для исследования магнитной структур. этих веществ и для получения поляризованных нейтронных пучков (см. Магнитная нейтронография, Пол.чризация нейтронов).  [c.71]

Развитие химии, биохимии, химии высокомолекулярных соединений выдвигает перед учением о строении М. ряд новых задач. Наиболее актуальные вопросы связаны со строением и свойствами свободных радикалов, ионов сложных органич. соединений, металлоорганич. соединений, с конформациями молекул. Современная физика и химия применяют при решении соответствующих задач новые методы, разработанные в последние десятилетия электронный и ядерный магнитный резонанс, радиоспектроскопию, изотопный обмен и т. д. Весьма важны вопросы, относящиеся к таутомерным превращениям М., идущим путем перехода протона от одного атома к другому. Здесь большую роль играет водородная связь, природу к-рой еще нельзя считать вполне изученной. Изучение др. видов межмолекулярных взаимодействий и конформаций М. необходимо для понимания строения и условий возникновения надмолекулярных структур, в свою очередь определяющих свойства молекулярных кристаллов, полимеров, биологич. систем. В связи с проблемами молекулярной биофизики, выдвинувшимися на первый план, наряду с указанными вопросами необходимо исследование поведения М. в открытых системах.  [c.284]

Эксперименты с М. п., в особенности проведенные методами магнитного и электрич. резонанса (см. Раби метод), дают обширную информацию о свойствах молекул, атомов и ядер. Из этих экспериментов были получены сведения о спинах ядер, магнитных и электрич. моментах атомов и молекул, о взаимодействиях ядер в свободных молеку,лах и др. В частности, методом атомных и М. п. были исследованы лэмбовский радиационный сдвиг метастабн,льного уровня атома водорода и аномальный магнитный момент электрона. В оптике применение узконаправленных М. п. в качестве источников света позволяет практически исключить доплеровское уширение спектральных линий. Это достигается наблюдением испускаемого оптич.спектра в перпендикулярном направлении к движению М. Н. В спектроскопии М. п. позволили исследовать сверхтонкую структуру спектров, обусловленную такими эффектами, как электрическое квадрупольное и магнитное октупольное взаимодействия ядра с поле.м ато.мов или молекул, и ряд др. тонких взаимодействий.  [c.288]

Э л е к т р о м а г н и т н о е взаимодействие. а) Взаимодействие магнитного момента И. с магнитными моментами электронных оболочек атомов проявляется существенно для Н., длина волны к-рых порядка или больше атомных размеров (энергия Я < 10 эв и в особенности тепловые Н.) широко используется для исследования магнитной структуры и динамики твердых тел (см. Магнитное рассеяние нейтронов. Магнитная нейтронография). Интерференция с ядерным рассеянием позволяет получать пучки поляризованных медленных нейтронов (см. Ноляриааци.я нешпронов).  [c.381]

Если запрещепиьп" электронный переход становится возможным только из-за сво11ств симметрии электронных волновых функций, как это имеет место в случае магнитных дипольных и электрических квадрунольных переходов (разд. 1,6, а) или в случае интеркомбинационных переходов (разд. 1,6, Р), то, как и раньше, момент перехода можно разделить на две части. Одна из них (Ле е") зависит только от электронных волновых функций, а другая часть (/ ") — только от колебательных волновых функций. Колебательная часть ЛоЧ" точно такая л е, как и для разрешенных электронных переходов, и, следовательно, колебательная структура этих запрещенных электронных переходов тоже точно такая же. Однако совершенно по-другому обстоит дело, если запрещенный электронный переход становится возможным благодаря электронно-колебательному взаимодействию (разд. 1,6, 7). Поэтому только такие переходы и следует рассмотреть особо.  [c.173]

При взаимодействии с поверхностью пучка первичных быстрых электронов (с энергией в сотни кэВ в случае ПЭМ и десятки кэБ для РЭМ) возникает несколько видов ихтучения вторичные электроны, рентгеновское (тормозное и характеристическое) и оптическое излучения. Анализ пучка вторичных электронов позволяет не только повысить разрешающую способность РЭМ, но и получить ценные сведения о локальных электрических и магнитных полях на поверхности. Детектирование электромагнитного излучения дает возможность одновременно с получением изображения участка поверхности судить о кристаллографической структуре (микродифракция), дефектах (катодолюминесценция) и его составе (оже-спектры). В современных РЭМ эта информация может быть получена с площадок в несколько квадратных нанометров. Если поверхность полностью разупорядочена, дополнительную информацию дает анализ фазового контраста изображения, т.е. сдвига фаз электронных пучков при их взаимодействии с поверхностью. Использование импульсной техники позволяет получать не только статическую картину участков поверхности, но и изучать динамические процессы на ней — диффузию тяжелых атомов, их сефе-гацию, фазовые переходы и др. Временное разрешение может быть доведено до нескольких пикосекунд.  [c.123]


Смотреть страницы где упоминается термин Электрон-электронное взаимодействие и магнитная структура : [c.454]    [c.931]    [c.185]    [c.32]    [c.54]    [c.306]    [c.308]    [c.501]    [c.456]    [c.480]    [c.547]    [c.170]   
Физика твердого тела Т.2 (0) -- [ c.286 , c.307 ]



ПОИСК



Взаимодействие электрон-электронное

Взаимодействие электронами

Взаимодействие электронно-электронное

Магнитное взаимодействие

Структура магнитная

Электронная структура



© 2025 Mash-xxl.info Реклама на сайте