Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анизотропные кристаллы преломление на поверхности

Выше было показано, что нормальная поверхность содержит важную информацию о распространении волн в анизотропных средах. Эта поверхность однозначно определяется главными показателями преломления п , п , п . В общем случае, когда все три главных показателя преломления п , п , различны, существует две оптические оси. Такой кристалл называют двуосным. Во многих оптических материалах два главных показателя преломления совпадают.  [c.93]


Рассмотрим плоскую волну, падающую на поверхность анизотропного кристалла. В общем случае преломленная волна представляет собой смесь двух независимых волн. В одноосном кристалле преломленная волна, вообще говоря, является смесью обыкновенной и необыкновенной волн. При отражении и преломлении на плоской границе раздела граничные условия требуют, чтобы все волновые векторы лежали в плоскости падения и чтобы их тангенциальные составляющие вдоль границы раздела была равны друг другу. Это кинематическое условие остается справедливым и при преломлении на границе анизотропного кристалла.  [c.98]

При падении плоской волны на поверхность оптически анизотропного кристалла формируются две разные преломленные волны. В одноосных кристаллах образуются обычная и необычная преломленные волны. Обычная (сферическая) волна полностью аналогична преломленной волне в изотропных материалах (направление луча совпадает с направлением ее волнового вектора и поэтому лежит в плоскости падения) поведение необычной волны аномально ее волновой фронт не перпендикулярен направлению распространения поэтому направление луча необычной волны, вообще говоря, не лежит в плоскости падения.  [c.63]

Преломление на поверхности анизотропного кристалла  [c.30]

Различие между одноосными и двуосными кристаллами становится особенно очевидным, если рассмотреть поверхность волновых векторов к (т. е. геометрическое место точек концов к-вектора как функцию направления). Поскольку любой анизотропный кристалл имеет два показателя преломления для двух взаимно перпендикулярных направлений поляризации, волновые векторы всегда образуют две поверхности. В случае одноосного кристалла одна из поверхностей, соответствующая обыкновенной волне, является сферой. Другая поверхность есть эллипсоид вращения. Пересечение этой поверхности с плоскостью рассматривалось в разд. 1.5. Заметим еще раз, что эта поверхность не является оптической индикатрисой. Например, для положительного одноосного кристалла ось z оптической индикатрисы является большей осью, в то время как для поверхности волнового вектора ось z является меньшей осью.  [c.35]


При переходе света через границу раздела двух изотропных сред наблюдается преломление света, закономерности которого вытекают из принципа Гюйгенса. Со способом построения преломленного луча мы уже знакомы. Аналогичное построение имеет место при переходе света из изотропной среды в анизотропную. В этом случае при известном знаке кристалла и направлении оптической оси строят лучевые поверхности обыкновенного и необыкновенного лучей.  [c.261]

Рассмотрим некоторые случаи преломления света в одноосных кристаллах. При анализе будем пользоваться принципом Гюйгенса (см. 2.4) —простым и в то же время достаточно эффективным способом изучения распространения света в анизотропных средах. Поверхности, фигурирующие в построении Гюйгенса, есть лучевые поверхности, а не поверхности нормалей. Действительно, по правилу Гюйгенса для получения фронта плоской волны проводят плоскость, касательную к поверхности Гюйгенса. А фронт волны касателен именно к лучевой поверхности И пересекает поверхность нормалей. Таким образом, используя представление о сферической и эллиптической волновых поверхностях, можно найти направления обыкновенного и необыкновенного лучей в одноосных кристаллах. Разберем частные случаи.  [c.47]

Эти уравнения для волновых амплитуд принято называть уравнениями генерации . Для их вывода мы до сих пор ограничивались изотропной средой и волнами с одним направлением поляризации. Однако обычно в приложениях важную роль играют также анизотропные вещества, поскольку в них нелинейные эффекты проявляются уже во втором порядке. Кроме того, как в изотропных, так и в анизотропных веществах наблюдаются эффекты, в которых большое участие принимают компоненты поля с различными направлениями поляризации. В этих общих случаях система уравнений генерации сложным образом зависит от направлений распространения и поляризации отдельных волн. В дальнейшем мы сделаем упрощающие предположения, при которых уравнения генерации для компонент Е. будут подобны уравнениям для изотропной среды при фиксированном направлении поляризации. Вновь предположим, что волновые векторы всех участвующих в процессе волн имеют одно и то же направление, за которое мы выберем ось г лабораторной системы координат. Этого можно достичь, если направить излучение перпендикулярно к соответствующим образом вырезанной поверхности кристалла. Кроме того, мы ограничимся оптически одноосными кристаллами и расположим ось у лабораторной системы координат в плоскости главного сечения, т. е. в плоскости, образуемой направлением распространения луча и оптической осью. Ось х перпендикулярна этой плоскости. При таком выборе осей. -компонента волны с частотой I распространяется как обыкновенная водна с волновым числом = <7о (Л, а /-компонента — как необыкновенная волна с волновым числом ао /) . (Мы обозначаем через волновое число света с направлением поляризации .) Наконец, мы сделаем достаточно часто выполняющееся предположение, что эллипсоид линейного показателя преломления мало отклоняется от сферической формы. При этом предположении оказывается возможным во многих случаях пренебречь  [c.101]

Важные нелинейные эффекты на граничных поверхностях, такие как генерация гармоник, суммарных и разностных частот при отражении, наблюдались и были рассчитаны уже в начале 60-х годов [2, 5]. Были даны общие, формулы для нелинейного отражения и преломления на граничной поверхности между линейной изотропной и нелинейной анизотропной средами. В частности, для оптически одноосных кристаллов были сделаны численные оценки [4.-15]. Позднее были исследованы генерация гармоник, суммарных и разностных частот, а также и другие параметрические процессы (ср. разд. 3.14 и 3.15) в тонких слоях и в волноводах.  [c.485]


На светопропускание керамики влияет У исталло-графическая форма основной фазы. В керамических материалах кубической сингонии показатель преломления одинаков во всех направлениях, и светопропускание через них в видимой части света достигает 80%. В керамике, содержащей соединения с более сложной структурой, вследствие анизотропии оптических свойств светопропускание снижается. Значение пористости керамики уже освещено ранее. Прозрачна только практически бес-пористая керамика. Установлено, что светопропускание керамики, особенно содержащей анизотропные кристаллы, связано с размером кристаллов. С увеличением размера кристаллов поверхность межзеренных границ, рассеивающих свет, уменьшается и светопропускание возрастает.  [c.83]

Обычно в учебниках встречается утверждение, что законы преломления не приложимы к необыкновенному лучу в одноосном кристалле и к обоим лучам в двуосном. Это — правильное утверждение, но оно имеет чисто отрицательный характер, показывая, что простое построение, предписываемое законом преломления, не при-ложимо к решению задачи о направлении распространения светового луча. Если взамен не дается никаких правил, то решение даже весьма простых вопросов кристаллооптики оказывается затруднительным. Между тем существует гораздо более общий прием отыскания направления распространения преломленной световой волны, а именно, построение, основанное на принципе Гюйгенса, следствием которого для изотропной среды является закон преломления Декарта — Снеллия. Напомним, что сам Гюйгенс рассматривал при по.мо-щн этого приема вопрос о распространении света в двоякопрелом-ляющих телах (исландский шпат) и получил крайне важные результаты. Применение построения Гюйгенса является простым и действенным средством для разбора вопроса о распространении света в анизотропных средах. Поверхность, фигурирующая в построении Гюйгенса, есть, очевидно, лучевая поверхность, а не поверхность нормалей. Действительно, по правилу Гюйгенса для получения фронта (плоской) волны проводят плоскость, касательную к поверхности Гюйгенса. А фронт волны тсателен именно к лучевой поверхности (рис. 26.11, а) и пересекает поверхность нормалей (рис. 26.11, б).  [c.509]

КРИСТАЛЛЫ валентные (атомные) содержат в узлах кристаллической решетки нейтральные атомы (С, Ge, Те и др.), между которыми осуществляется гомеополярная связь, обусловленная квантово-механическим взаимодействием глобулярные представляют собой частный случай молекулярных кристаллов и имеют вид клубка полимеров жидкие обладают свойствами как жидкости (текучестью), так и твердого кристалла (анизотропией свойств) внутри малых объемов идеальные не имеют дефектов структуры иопные обладают гетерополярной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами квантовые характеризуются большой амплитудой нулевых колебаний атомов, сравнимой с межатомным расстоянием металлические образуются благодаря специфической химической связи, возникающей между ионами кристаллической решетки и электронным газом (Си, А1 и др.) молекулярные (Лг, СН , парафин и др.) формируются силами Ван-дер-Вальса, главным образом дисперсионными нитевидные вытянуты в одном направлении во много раз больше, чем в остальных оптические [активные поворачивают плоскость поляризации света вокруг падающего линейно поляризованного луча анизотропные обладают двойным лучепреломлением, состоящим в том, что луч света, падающий на поверхность кристалла, раздваивается в нем на два преломленных луча двуосные имеют две оптические оси, вдоль которых свет не испытывает двойного лучепреломления одноосные (имеющие одну оптическую ось отрицательные, в которых скорость обыкновенного светового луча меньше, чем скорость распространения необыкновенного луча положительные, в которых скорость распространения обьпсновенного светового луча больше, чем скорость распространения необыкновенного луча))] КРИСТАЛЛИЗАЦИЯ— образование кристаллов из паров, растворов, расплавов веществ, находящихся в твердом состоянии в процессе электролиза и при химических реакциях  [c.244]

АНИЗОТРОПИЯ, явление, выражающееся в зависимости физич. величин, выражающих определенное свойство твердого или жидкого тела от направления, вдо.11Ь к-рого эта величина (коэфициент теплопроводности, показатели преломления, прочность на разрыв и др.) измеряется. Тела, обладающие А., называются анизотропными в противоположность изотропным, в к-рых свойства по всем направлениям одинаковы. Анизотропная среда однородна (гомогенна) в том случае, когда зависимость физич. свойств от направления одинакова в различных точках среды. Для данного направления все физич. свойства однородного тела не зависят от положения элемента объема, длп к-рого онп исследуются. Однородная А. может быть обусловлена строением тела, наличием кристаллич. структуры или резко выраженной асимметрией его молекул, легко ориентирующихся под влиянием внешнего или собственного поля (жидкие кристаллы, кристаллич. жидкости). А. (например местная) возникает также в результате односторонних деформаций тела (возникновение неравномерно распределенных внутренних напряжений при растяжении, одностороннем сдавливании тел, закалке, вообще при разных видах механической обработки). Поверхностный слой всякого тела вызывает местную А., делая тело неоднородным вблизи поверхности раздела с окружающей средой. При этом А. поверхностного слоя выражается в том, что физич. свойства по тангенциальным направлениям (лежащим в поверхности) отличны от свойств в направлении, нормальном ij поверхностному слою. Тела м. б. анизотропны в отношении одних свойств (напр, оптических) и изотропны относительно других (напр, упругих). Кристаллы всех систем кроме кубической оптически анизотропны. В таких кристаллах по каждому направлению (за исключением направления. лучевых осей) идут два луча, оба поляризованных во взаимно перпендикулярных плоскостях. Оба эти луча распространяются в кристалле с разной скоростью. А. может быть исследована по характеру зависимости физич. свойств напр, тепловых или механических) в данной среде. В прозрачных телах для изучения А. удобнее исследовать оптич. свойства (напр, по отношению к поляризованному свету). Наиболее полным методом исследования является исследование структуры (рентгено- или электро-нографич. анализ), обусловливающей А.  [c.388]


Преломление в кристаллах, а. Двойное лучепремтление. Рассмотрим плоскую волну, падающую из вакуума на плоскую поверхность 2 анизотропной среды. Эта волпа создаст прошедшее и отраженное поля. Мы кратко рассмотрим характер прошедшего поля, исиользуя по существу те же рассуждения, что и в случае изотропных тел (см, п. 1.5.1). Ограничимся определением направления распространения возмущения внутри кристалла и не будем исследовать выражений для отношений амплитуд, соответствующих формулам Френеля ).  [c.631]


Смотреть страницы где упоминается термин Анизотропные кристаллы преломление на поверхности : [c.492]    [c.196]    [c.160]    [c.58]   
Прикладная нелинейная оптика (1976) -- [ c.30 ]



ПОИСК



Анизотропность

Анизотропные кристаллы

Кристаллы поверхность

Преломление



© 2025 Mash-xxl.info Реклама на сайте