Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметры газовых турбин

При использовании в ПГУ типовой паровой турбины экономичность установки зависит от выбора типа и параметров газовой турбины. В табл. 7 даны показатели тепловой эффективности парогазового блока мощностью 400 МВт при трех различных типах газовой ступени. В оптимальном варианте к. п. д. ПГУ превышает 45% при начальной температуре газа 800° С. Повышение температуры до 1000—1100° С увеличивает к. п. д. ПГУ до 50% и выше.  [c.79]


Практически в большинстве случаев в качестве привода могут быть использованы паровые турбины разных типов (конденсационные и отборные) с различными начальными параметрами газовые турбины как чисто силовые, так и теплофикационные парогазовые установки электропривод.  [c.227]

О том, насколько прост принцип работы газовой турбины, можно судить и по характеризующим его термодинамическим расчетам, которые приводятся для того,, чтобы читатель мог сопоставлять и сравнивать параметры газовых турбин, описанных в настоящем разделе (описание приводится в простой и краткой форме).. Пусть засасываемый в компрессор воз- дух имеет температуру и давление р  [c.940]

Ряд технологических процессов, особенно химической промышленности, связан с потоками нагретых сжатых газов. Расширение этих газов в газовой турбине позволяет получить энергию, которая обычно используется в этом же процессе, например для нагнетания тех же газов. В этом случае вал турбины непосредственно соединяется с валом турбокомпрессора. Такое комбинирование позволяет существенно снизить потребление энергии в технологическом процессе. К сожалению, оно используется еще недостаточно широко, во-первых, из-за косности мышления технологов, а во-вторых, из-за отсутствия турбин на нужные параметры. Часто используют авиационные двигатели, выработавшие свой ресурс.  [c.61]

В соответствии с проектом два модуля котла будут работать на одну газовую турбину. Для ПГУ мощностью 635 МВт разработан проект турбины мощностью 50 МВт. Расчетная температура газов-на входе в турбину равна 870 °С. В первом цикле предусмотрена одна двухвальная турбий мощностью 530 МВт со следующими параметрами пара температура 538/538 °С, давление 16,5 МПа. Технология регулирования нагрузки заключается в поддержании постоянными высоты псевдоожиженного слоя и расхода воздуха от компрессора ГТУ при изменении отношения топливо — воздух и температуры в слое.  [c.21]

Неприменимы ряды предпочтительных чисел и для определения параметров прогрессивно развиваемых и модернизируемых машин, параметры которых на каждой стадии зависят от технических возможностей и потребностей соответствующих отраслей народного хозяйства. Так, мощность тепловых машин зависит от их начальных параметров (давления и температуры) и частоты вращения. Ни один из этих параметров невозможно произвольно увеличить. В некоторых случаях они имеют оптимальное значение (например, степень сжатия в газовых турбинах), изменение которого ухудшает показатели машины. Увеличение температуры и частоты вращения возможно только на базе технических усовершенствований (повышения жаропрочности материалов, улучшения охлаждения термически напряженных деталей). Результаты этих поисковых работ невозможно уложить в ряды предпочтительных чисел.  [c.63]


ТИ — топливный насос КС—камера сгорания ГТ — газовая турбина ВК — воздушный компрессор ПД — пусковой двигатель Р — регенеративный подогреватель. Цикл этой установки представлен на рис. 42. Известны параметры Ц = 30° С и = 400° С, а также степень повышения давления в цикле А, = 6. Рабочее тело — воздух  [c.156]

Определить параметры газа, подводимого к соплам газовой турбины, если расход газа, отнесенный к одному соплу, равен 0,3 кг/с при давлении за соплами 0,1 МПа. Площади критического и выходного сечений равны соответственно 215 и 498 мм . Принять, что продукты сгорания обладают свойствами воздуха.  [c.95]

Параметры, характеризующие работу ГТУ. Потери в ГТУ подразделяются на внутренние, влияющие непосредственно на изменение состояния рабочего тела, и внешние. К основным внутренним потерям относятся потери теплоты в газовой турбине, компрессоре и камере сгорания.  [c.154]

При изложении материала, относящегося к циклам паросиловых установок, обращено внимание на особенности их при применении водяного пара высоких параметров. Подробно рассмотрен теплофикационный цикл, составляющий одну из основ советской теплоэнергетики. Достаточно полно рассмотрены циклы газовых турбин с учетом того, что в ряде техникумов требуется подробное  [c.7]

Во многих областях инженерной деятельности широко применяются машины и аппараты, в которых рабочее тело находится в непрерывном движении (потоке). При этом вещество поступает в одном месте системы с определенной скоростью и параметрами р1, У1, Т1, а в другом — удаляется со скоростью Ша и параметрами р , Иа, Та- Примером таких систем могут служить участок канала переменного сечения, паровые и газовые турбины, компрессоры, паровые котлы и другие теплообменные устройства.  [c.83]

Для газовых турбин работу принято вычислять через тер-Рис. 7.2 мические параметры состояния  [c.90]

Рабочее тело е параметрами состояния в точке 4 подается в первую ступень газовой турбины, где происходит адиабатный процесс расширения 44. Отработавшее в первой ступени рабочее тело вновь подается в камеру сгорания и подогревается (изобара 4 4") при подводе количества теплоты q . Во второй ступени газовой турбины рабочее тело расширяется (адиабата 4"5), после чего поступает в теплообменник-регенератор.  [c.68]

Рабочий процесс в ступенях паровых и газовых турбин. Изменение параметров в ступени турбины в основном определяется соотношением проходных сечений соплового аппарата и рабочего колеса. При некотором соотношении сечений статическое давление р перед рабочим колесом равно давлению рг за ним (активная ступень, рис. 4.5, с) или больше его (реактивная ступень, рис. 4.5,6). При Р1/Р2 1,0 1,05 ступень условно также считается активной.  [c.182]

Регулирование компрессора. Регулирование параметров компрессора достигается-, следующими способами изменением частоты вращения вала, закруткой потока перед рабочим колесом и дросселированием потока на всасывании или нагнетании. Приводным двигателем мощных компрессоров, (мощностью более 3 МВт) является паровая или газовая турбина, и изменение частоты вращения достигается здесь без особых затруднений регулированием турбины..  [c.234]

При рассмотрении термодинамических циклов газовых турбин часто вместо степени сжатия в пользуются параметром ш р /Ри  [c.291]

Оптимальное значение параметра Y для легких газовых турбин лежит в пределах 0,55—0,60 [38].  [c.150]

ПГТУ выполняются по различным схемам, но все они преследуют одну цель — расширить температурный интервал за счет высокотемпературной газотурбинной надстройки , а также соединить другие достоинства ПТУ и ГТУ. КПД зависит от схемы и параметров РТ, при температуре перед газовой турбиной 1100— 1200° С (применяется жидкостное охлаждение лопаток) он может достигать значений 50% и выше.  [c.160]


Как только станут доступны воспроизводимые образцы композитов, основное внимание следует уделить влиянию условий эксплуатации материала на сплошность поверхности раздела и механические свойства, зависящие от состояния поверхности раздела. Подобно тому как это было при разработке композитов А1 — В, такие исследования очень важны для установления точных параметров технологии изготовления материала, с тем чтобы получить именно то особое состояние поверхности раздела, которое необходимо для конкретных условий применения материала. Если композит предназначается, например, для лопаток газовых турбин, то конструктор должен установить реальные требования к этим анизотропным материалам с ограниченной пластичностью таким образом, чтобы применительно к условиям использования можно было эффективно воздействовать на свойства, зависящие от со стояния поверхности раздела, например, на поперечную прочность В данной главе показано, что в настоящее время известны основ ные принципы, с помощью которых может быть изменена струк тура поверхности раздела в металлах, армированных окислами Однако из-за отсутствия образцов с воспроизводимыми характе ристиками влияние изменения состава и структуры поверхности раздела на механические свойства композитов практически не изучено.  [c.351]

С целью исследования влияния циклических изгибающих нагрузок на процесс развития трещин термической усталости в кромках лопаток газовых турбин создана экспериментальная установка [11, с помощью которой в газовом потоке с периодически изменяющимися термодинамическими параметрами одновременно испытывается шесть образцов, нагружаемых по схеме чистого кругового изгиба.  [c.337]

При моделировании работы таких конструкций, в частности лопаток газовых турбин, ввиду сложности механических и физикохимических процессов трудно использовать рекомендации теории подобия и теории размерностей, поскольку при этом приходится сталкиваться с противоречивыми требованиями. В предыдущей главе отмечалось, что в этом случае следует стремиться к тождественности тензоров напряжений и тензоров деформаций в сходственных зонах геометрически подобных тел. Наиболее надежные результаты можно было бы получить при соблюдении тождественности граничных условий теплообмена и механического нагружения на моделях, изготовленных из реального материала тех же размеров, что и натурная деталь, например лопатка. Другими словами, наиболее надежные данные о несущей способности и долговечности таких деталей, как лопатки газовых турбин, можно получить, если испытывать реальные лопатки в условиях, воспроизводящих реальные спектры силовых и тепловых нагрузок в подвижных средах, имеющих тождественные термодинамические параметры и одинаковый химический состав. Однако это не всегда осуществимо, поскольку для такого моделирования требуются капитальные затраты.  [c.187]

Разработка способов расчета изгибных и связных колебаний стерн<ней переменного сечения, дисков, вращающихся валов на основе метода динамической жесткости, изыскания точных решений в специальных функциях, вариационных методов и применения средств вычислительной техники явилась важным фактором обеспечения вибрационной надежности роторных узлов паровых и газовых турбин высоких параметров, а также гидротурбин предельной мощности. Существенное значение в этом сыграли также исследования по конструкционному демпфированию, гидродинамике опор скольжения и динамическим измерениям, позволившие улучшить оценку колеба-  [c.38]

При использовании метода аналогичности могут быть приняты другие произвольно выбранные условия определения масштабов уравнение (4) тогда будет иметь иную форму при том же числе критериев аналогичности. Полученная форма уравнения (4) предпочтительна в связи с тем, что она может быть использована и при Гд = 0. Случай 0, возможный для некоторых видов двигателей, практического значения не имеет, так как такие машины обычно снабжают регуляторами частоты вращения. Это относится в основном к машинам с приводом от двигателей внутреннего сгорания или газовых турбин. Величины Гд и здесь определяются параметрами регулятора, так как их значения для этих двигателей малы и могут не учитываться.  [c.40]

В реальном процессе расширения реагирующего газа в ступени газовой турбины, очевидно, будет иметь место кинетическое течение. Параметры газа на выходе из соплового аппарата в последнем случае, как следует из рассмотрения уравнений (4.11) —(4.18), оказываются зави-  [c.168]

На рис. 4.2—4.6 представлены результаты расчета параметров проточной части газовой турбины мощностью 1000 Мет, выполненного по этому методу.  [c.177]

Возможность создания высокотемпературной газовой турбины в значительной степени определяется начальным давлением газа, от величины которого зависит процесс охлаждения проточной части. Зависимость основных параметров газопаровой установки, работающей по схеме ЦКТИ —ЛПИ (начальная температура газа 1200° С), от степени повышения давления о представлена на рис. 3. Кривые 1, 2 и 3 иллюстрируют изменение, соответственно к. п. д. установки, относительного расхода пара d и температуры уходящих газов для чисто бинарной схемы. Максимальное значение к. п. д. имеет место при ст ж 9.  [c.207]

Параметры газовых турбин 129, 131 Перо лопаткн 70 Подшипники качения 199  [c.559]

Конструктивное совершенство и минимизация массы ТНА связаны с параметрами газовой турбины, применяемой в качестве основного привода насосов. С ростом угловой скорости ротора ТНА повьпнается его экономичность. Часто турбина компонуется с насосами на общем валу без сложных дополнительных агрегатов и узлов. В качестве рабочего тела турбины широко используются основные компоненты топлива ЖРД.  [c.192]


Для идеального цикла газовой турбины с подводом теплоты при р = onst (см. рис. 39) найти параметры в характерных точках, полезную работу, термический к. п. д., количество подведенной и отведенной теплоты, если дано Pi = 100 кПа = 27° С <з = 700° С  [c.153]

Для идеального цикла газовой турбины с подводом теплоты при р = onst (см, рис. 39) определить параметры в характерных точках, полезную работу, термический к. и. д., количество подведенной и отведенной теплоты. Дано Pi = 0,1 МПа П == 17° С ij = 600° С X — = = рз/р] = 8. Рабочее тело— воздух. Теплоемкость принять постоянной.  [c.155]

Газовая турбина работает по циклу с подводом теплоты при р = onst. Известны параметры pi = =- 0,1 МПа П = 40° С = 400° С, а также степень увеличения давления Я = 8. Рабочее тело — воздух.  [c.155]

Найти распределение относительного удельного расхода воздуха/" =РстК ст/(Роо < ) вдоль вогнутой поверхности лопатки газовой турбины, необходимое для поддержания постоянной температуры этой поверхности Т т. = 873 К,. Охлаждающий воздух поступает из компрессора во внутреннюю полость лопатки при температуре 473 К. Параметры течения воздуха на внешней границе пограничного слоя и размеры лопатки взять из задачи 16.18.  [c.250]

До настоящего времени предприятия химической промышленности являются большими потребителями первичных энергоресурсов (топлива, теплоты и электроэнергии), получаемых со стороны. При правильной разработке энерготехнологической схемы производства можно не только значительно сократить потребление первичных энергоресурсов, но и даже полностью отказаться от потребления теплоты и электроэнергии, получаемых со стороны. Считается наиболее перспективным создание ЭХТС, в которых энергетическое оборудование (тепло-и парогенераторы, котлы-утилизаторы, паровые и газовые турбины, теплоиспользующие аппараты, холодильные установки, тепловые насосы и термотрансформаторы) входит в прямое соединение с химикотехнологическим оборудованием, составляя единую систему. В такой ЭХТС всякому изменению параметров химической технологии должны сопутствовать и соответствующие изменения энергетических параметров и наоборот. Таким образом, в ЭХТС создается тесная взаимосвязь и взаимообусловленность между технологическими и энергетическими стадиями производства.  [c.308]

Представляют интерес результаты эксергетпческого анализа синтеза аммиака, приведенные в журнале Химическая промышленность (1982, № 5). Из теплового баланса ЭХТС следует, что в колонне синтеза аммиака, водоподогревателе и теплообменных аппаратах потери энергии близки нулю. Из эксергетического же анализа следует противоположный вывод — наибольшие потери эксергии оказываются в колонне синтеза (22,6% от всех потерь) они выше, чем в компрессоре (16%) и газовой турбине (20%), что объясняется большой необратимостью протекающей в колонне синтеза аммиака химической реакции. Общие потери в колонне синтеза аммиака, водоподогревателе и теплообменниках составляют почти половину всех эксергетических потерь ЭХТС. Потери эксергии в колонне синтеза аммиака можно значительно уменьшить за счет повышения температуры в одной из ее зон, так как это мероприятие позволило бы более эффективно использовать теплоту реакции и выдать на сторону пар более высоких параметров.  [c.322]

Рассмотрены методы расчета параметров систем охлаждения перфорированных лопаток газовых турбин с воздушным 1 онвективно-пленочным охлаждением (определение эффективности газовой завесы на перфорированной поверхности, теплопроводности стенки и оптимальности системы вдува). Дан эксергетический метод выбора параметров системы подвода охладителя к лопаткам в системе двигателя.  [c.428]

Армированные волокнами композиционные материалы применяются чаще всего или в форме тонких оболопек, или как лопатки двигателей газовых турбин и компрессоров. Большинство таких элементов конструкций в процессе работы могут испытывать сильные удары, перпендикулярные плоскости армирования. Поэтому пригодность композита для практических целей определяется не только обычными конструкционными параметрами, но и его ударными свойствами.  [c.322]

Экономические показатели газовой турбины можно улучшить, используя те же способа, что и в паровой турбине. Регенеративный подогрев воздуха (т. е. его подогрев за счет теплоты, отдаваемой выхлопными газами, перед смешением с топливом) позволяет увеличить Ть и Тс, при этом Та остаетсй прежней. Как правило, этот прием обеспечивает существенное увеличение КПД. При Tb — Td и значениях параметров, взятых для только что рассмотренного примера, КПД возрастет до  [c.77]

Таким образом, согласно прямой (первой) теореме подобия в подобных явлениях движения жидкости должны соблюдаться условия (4.50) — (4.58). Рассмотрим, какое значение имеют критерии (инварианты) подобия, или, как часто говорят, числа Эйлера, Рейнольдса и Пекле, при изучении вопросов прочности. С характеристиками жидкости обычно сталкиваются при изучении закономерностей разрушения конструктивных элементов в тепловых полях и газовых потоках, особенно при теплосменах. Работами сотрудников ИПП АН УССР и других исследователей показано, что термодинамические параметры газового потока и его химический состав оказывают очень большое влияние на долговечность лопаток газовых турбин [62]. Небольшое изменение этих параметров либо введение в поток ничтожных добавок сернистого газа или солей морской воды (до 10 мгм на 1 м воздуха) изменяет долговечность более чем на порядок.  [c.136]

Случай малой силы сухого трения. Для получения зависимости прогибов ротора от оборотов необходимо прежде всего вычислить прогибы ротора под диском, считая его трехопорным, по формуле (VI. 5). Аналогичные вычисления необходимо сделать и для двухопорной схемы ротора. Прогибы в этом случае определяются по формуле (VI. 5), но коэффициенты а, Ь, с, d уже вычисляются по приведенным ниже соотношениям. Далее, необходимо вычислить величины прогибов в момент вступления в работу ограничителей деформации в опоре, что может быть либо при малой величине зазора, либо при большом дисбалансе, либо при неудачном выборе величины затяжки пружин. Следует заметить, что по эксплуатационным и конструктивным соображениям параметры опоры нужно подобрать так, чтобы при нормальных и повышенных дисбалансах ограничители не действовали их работу можно допустить только при аварийных величинах дисбаланса. На фиг. 87 представлен возможный вид решений при величине эксцентриситета е = 0,002 см, который обычно бывает при эксплуатации газовой турбины. Следует заметить, что эта величина эксцентриситета приблизительно в 10 раз больше величины, устанавливаемой на балансировочном станке. Возрастание дисбаланса объясняется тем, что газовая турбина работает в условиях высокой температуры ее диск часто находится в пластическом состоянии, наблюдается вытяжка лопаток, замков и пр. Более того, возможна и некоторая расцентровка деталей ротора. При возникновении дефектов у турбины обгара кончиков лопаток, обрыва их частей и т. д., эксцентриситеты могут быть более е = 0,01 см. Так, обрыв одной лопатки вызывает эксцентриситет е = 0,1 см. Такие величины дисбалансов будем называть аварийными.  [c.180]

Невысокие теплоперепады в турбине, малые удельные объемы и благоприятные параметры на линии насыщения конденсационного цикла на N2O4 позволяют добиться значительного увеличения удельной мощности турбин, улучшить их весогабаритные характеристики (в 3—5 раз), что дает возможность создать одновальные газовые турбины единичной мощностью 1000—2000 Мет [414] при 3000 об/тИ н.  [c.5]


Результаты, установленные в работах [419—423], указывают на необходимость учета влияния кинетики химических реакций при выборе тепловых схем и параметров цикла, при расчетах теплообменных аппаратов и проточных частей газовых турбин. Для решения этих задач требуется разработка методов расчета параметров потока N2O4 в каналах с постоянным и переменным поперечным сечением при наличии и отсутствии энергообмена и трения, а также детальное знание кинетики и механизма химических процессов, протекающих в реагирующей четырехокиси азота.  [c.7]

Еще более значительны затруднения, возникающие при расчете параметров потока реагирущей системы в проточной части газовой турбины. Немонотонность теплофизических свойств и учет кинетики химических реакций делают в настоящее время практически неразрешимой и задачу стационарного двумерного вихревого течения реагирующей смеси. Эти затруднения указывают на необходимость разработки упрощенной математической модели, отражающей основные физические закономерности расширения реагирующего газа в ступени турбины.  [c.166]


Смотреть страницы где упоминается термин Параметры газовых турбин : [c.125]    [c.110]    [c.215]    [c.18]    [c.183]    [c.298]    [c.77]    [c.88]    [c.7]   
Конструкция и проектирование авиационных газотурбинных двигателей (1989) -- [ c.129 , c.131 ]



ПОИСК



Газовая турбина основные параметры

Конструктивные схемы энергетических ГТУ и начальные параметры газов газовых турбин

Конструкции газовых турбин и их основные параметры

Турбина газовая

Турбины Газовые турбины

Турбины газовые



© 2025 Mash-xxl.info Реклама на сайте